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Abstract
This article describes a novel bifurcation phenomenon occur-
ring in the 2D parameter space of piecewise-linear maps. In
the region of chaotic behavior we detect an infinite number
of interior crises bounding the regions of multi-band attrac-
tors. This phenomenon, denoted as bandcount adding sce-
nario, leads to a self-similar structure of the chaotic region in
the parameter space.
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1 Introduction
One of the phenomena often observed when dealing
with piecewise-smooth systems is the so-called robust
chaos. In the pioneer work by Banerjee, Yorke and
Grebogi (Banerjeeet al., 1998) this term is defined by
the absence of periodic windows. This means, that an
infinitesimally small parameter perturbation does not
affect the chaotic nature of the attractor. It was ini-
tially assumed, that chaos without periodic windows
is not possible for maps with a smooth system func-
tion (Barretoet al., 1997; Banerjeeet al., 1998). How-
ever, some years later it was shown, that it is pos-
sible to design smooth maps demonstrating this phe-
nomenon (Andrecut and Ali, 2001a; Andrecut and
Ali, 2001b).
However, the absence of periodic windows does not ex-
clude possible non-smooth changes of the topological
structure and geometrical properties of the chaotic at-
tractors caused by infinitesimally small parameter per-
turbations. Therefore it is less restrictive than a gen-
eral definition for robustness of attractors. Following
the famous work by Milnor “On the concept of at-
tractor” (Milnor, 1985), an attractorA existing at the
pointp in parameter space is called robust (structurally
stable), iff for all attractorsA′ existing at the points
p′ ∈ Uε(p) in the infinitesimally small neighborhood
Uε(p) there exists a smooth mapping betweenA and
A′. This definition means, that an infinitesimally small

parameter perturbation does not affect the topologi-
cal structure and geometrical properties of the attrac-
tor. Typically, the chaotic nature of the attractor is pre-
served as well.
One situation where the difference between both def-
initions becomes considerably is given by specific
chaos-chaos transitions, in particular interior and merg-
ing crises. These bifurcations are well-known since
the fundamental publications (Grebogiet al., 1982;
Grebogi et al., 1983) and investigated in several
works theoretically and experimentally (see for in-
stance (Grebogiet al., 1986; Dittoet al., 1989)). Both
in smooth and in piecewise-smooth systems interior
and merging crises are caused by collisions of a chaotic
attractor with an unstable periodic orbit located within
its basin of attraction. The attractor at the bifurcation
point is robust in the sense of (Banerjeeet al., 1998),
since there are no periodic windows in its vicinity.
However, it is not robust in the sense of (Milnor, 1985),
since its geometrical shape and often also the topology
(especially the number of bands or strongly connected
components) changes at the bifurcation point.
In contrast to individual crisis bifurcations complete bi-
furcation scenarios formed by several types of crises
are still insufficiently investigated. Especially when
dealing with piecewise-smooth systems, it is well-
known that in the region of robust chaos one-band at-
tractors are often interrupted by small windows con-
taining multi-band attractors. The boundaries of the
regions of multi-band attractors are formed by crises
bifurcations. Therefore, in this work we will demon-
strate how the region of robust chaos is structured and
report some novel bifurcation scenarios representing
well-organized infinite sequences of crisis bifurcations
causing observed self-similarity of these structures.

2 Bandcount adding
Let us consider the following map

xn+1 =
{

f`(x) = axn + µ + 1 if xn < 0
fr(x) = axn + µ− 1 if xn > 0 (1)



Figure 1. Period adding ata = 0.99 (a,b) vs. bandcount adding at

a = 1.01 (c,d). Although the bifurcation diagrams (a, c) look very

similar, all attractors in (a) are periodic, whereas all attractors in (c)

are chaotic. Hereby both the periods of the periodic attractors (b) and

the bandcounts of the chaotic attractors (d) show the characteristic

adding structure.

with a > 0, |µ| < 1, representing a common model
of aΣ/∆ modulator investigated for instance in (Feely
and Chua, 1991; Feely, 1992; Jacometet al., 2004) and
occurring also in biology (Coutinhoet al., 2006) as a
specific model of genetic regulatory networks. Since
the stability of orbits in this system is determined by
the slopea only, this system shows fora < 1 peri-
odic (and in limiting cases aperiodic non-chaotic) dy-
namics. Fora > 1 the dynamics is chaotic in the
regionPch bounded by the curves of boundary crises
χ`/r = {(a, µ) | µ = ±(a− 2)/a} and outside of this
region divergent (see Fig. 2). Since no stable periodic
orbits for a > 1 are possible, the chaotic behavior in
the regionPch is robust.
In order to detect, which crisis bifurcations occur
within Pch, we have firstly to determine, which unsta-
ble periodic orbits exist in this region. Although this
question is in general difficult to solve, the first step
hereby is to consider the orbits, which are stable within
the periodic domain and become unstable at its bound-
ary. In the following a periodic orbit is characterized
by the sequenceσ consisting of symbolsL (for a point
x < 0) andR (for x > 0) and representing exactly one
period. The orbit corresponding to such a sequenceσ
will be denoted asOσ. The region in the parameter
space, whereOσ is stable (unstable), is denoted asPs

σ

(respectivelyPu
σ ). These regions are bounded by the

curves of border collision bifurcation, where the corre-
sponding orbitOσ will be destroyed as it collides with
the borderx = 0. These curves are denoted asξi,d

σ ,
whereby the indexi ∈ [0, |σ|] refers to the fact, that the
ith point of the orbit collides with the borderx = 0.
The symbold ∈ {`, r} represents the direction of the
collision, i.e. whether theith point of the orbitOσ col-
lides with the border from the left side or from the right
side.

Figure 2. Analytically determined regions of periodic dynamics

for orbits up to the third generation of the infinite symbolic sequence

adding scheme, as well as regions of chaoticPch and divergentPdiv

behavior.

It is shown in (Avrutinet al., 2007), that the structure
of the regionΠ = {(a, µ) | a < 1} is completely
determined by two codimension 2 big bang bifurca-
tions (Avrutin and Schanz, 2006) of the period adding
type, which occur at the pointsB1 = (0,−1) and
B2 = (0, 1). From each of these points an infinite num-
ber of regionsPs

σ originate (see Fig. 2), whereby the
sequenceσ may beLRn or RLn with n = 1, 2, . . . .
These sequences are denoted in the following as ba-
sic sequences, and the corresponding orbitsOLRn and
ORLn as basic orbits. Due to the symmetry property
((a, µ) → (a,−µ)) ⇒ (x → −x), it is sufficient to
consider only one family of basic orbits, for instance
OLRn , since(a, µ) ∈ Ps/u

LRn ⇒ (a,−µ) ∈ Ps/u
RLn .

Note that we use here and in the following a compact
notation: for instancePs/u

σ refers to the two different
objects, namelyPs

σ andPu
σ . The boundaries of the ex-

istence regions of a basic orbit (the curves of border
collision bifurcationsξ0,`/n,r

LRn andξ
n,`/0,r
RLn respectively)

can be calculated analytically for arbitraryn. It can be
shown, that for eachn the regionPs

LRn originates from
the big bang bifurcation pointB2 and collapses to a sin-
gular pointζLRn = (1, (n−1)/(n+1)) ∈ ∂Π located
at the boundary of the regionΠ (line a = 1) where the
orbit OLRn becomes unstable. Fora > 1 all these un-
stable orbits still exist, and the same border collision bi-
furcations curvesξ0,`/n,r

LRn are confining now the regions
Pu
LRn . Remarkably the regionsPs

LRn andPs
RLn do

not completely cover the regionΠ. Namely, between



Figure 3. Analytically calculated regionsQn+2
LRn and Qn+2

RLn (

n ≤ 10) of multi-band attractors caused by the basic orbits. For the

unstable two-periodic orbitOu
LR the existence boundaries (border

collision curvesξ1,r/0,`
LR ) are shown, as well as the curves of interior

crises η
r/`
LR, caused by this orbit.

each two subsequent regionsPs
LRn andPs

LRn+1 there
is some “free space”, where an infinite number of re-
gionsPs

σ are located, whereby the specific sequences
σ can be obtained from a pair of basic sequences
LRn andLRn+1 using the infinite sequence adding
scheme (Avrutinet al., 2006). This sequence adding
scheme is a symbolic representation of the well-known
Farey tree (Lagarias and Tresser, 1995; Bai-Lin, 1989)
also known as Stern-Brocot tree and implies that be-
tween the regionsPs

LRn andPs
LRn+1 there exists the

region Ps
LRnLRn+1 . Furthermore between regions

Ps
LRn andPs

LRnLRn+1 the regionPs
(LRn)2LRn+1 and

between regionsPs
LRnLRn+1 andPs

LRn+1 the region
Ps
LRn(LRn+1)2 exists and so on. Hereby the basic

sequences occur always in the first layer of the se-
quence adding scheme, the sequencesLRnLRn+1 in
its second layer, the sequences(LRn)2LRn+1 and
LRn(LRn+1)2 in the third layer and so on. Accord-
ing to this we denote the layer of the sequence adding
scheme, where a specific sequenceσ is generated, as
the generation of this sequence and of the correspond-
ing orbit Oσ. For instance, in Fig. 2 the analytically
calculated regionsPs

σ are shown for the orbitsOσ of
the generations one, two and three. Remarkably, the
existence regions of all orbitsOσ have similar struc-
ture. For eachσ the regionsPs

σ andPu
σ collapse to the

point ζσ ∈ ∂Π.
In the regionPch each of the orbitsOσ described above

Figure 4. Numerically detected regionsQK
σ of multi-band attrac-

tors. Marked are some of the regions corresponding to the first, sec-

ond and third generations of the bandcount adding scenario. Note the

correspondence between the period adding scenario fora < 1 and

the bandcount adding scenario fora > 1.

is unstable and leads to two interior crisesη`
σ and

ηr
σ. These curves can be calculated analytically us-

ing the condition that the points of the kneading orbits
f [k](f`(0)) and f [k](fr(0)) collides for somek with
the involved unstable periodic orbit. In other words,
at the crisis bifurcation the discontinuity pointx = 0
belongs to the stable manifold of the involved unsta-
ble periodic orbit. The resulting structure of the re-
gionPch is shown in Fig. 3, where the regionsQ|σ|+1

σ

bounded by the curvesηr/`
σ are marked forσ = LRn

andσ = RLn. The following properties of the crisis
curvesη`/r

σ are important:

1. The multi-band attractors undergoing crises at the
bifurcation curvesη`/r

σ where an orbit with period
|σ| is involved in have|σ|+ 1 bands. That means,
before the crisis the attractor has|σ| gaps and in
each gap one point of the unstable periodic orbit is
located.

2. Obviously, each regionQ|σ|+1
σ bounded by the

curvesη`/r
σ is embedded into the regionPu

σ , where
the unstable orbit responsible for the crisis exists.

3. Theη
`/r
σ curves originate from the pointζσ, from

which the regionPu
σ originates as well. At this

point the boundaries of the regionQ|σ|+1
σ are tan-

gent with the boundaries of the regionPu
σ .

Especially the properties (2) and (3) imply that in



the parameter space the regionsQ|σ|+1
σ are arranged

in the same order as the regionsPu
σ and also as

the regionsPs
σ for a < 1. For instance, for each

n between the regionsQn+2
LRn and Qn+3

LRn+1 there
exists the regionQ2n+4

LRnLRn+1 . Similarly, between
the regionsQn+2

LRn andQ2n+4
LRnLRn+1 there is the re-

gion Q3n+5
(LRn)2LRn+1 , whereas between the regions

Q2n+4
LRnLRn+1 andQn+3

LRn+1 the regionQ3n+6
LRn(LRn+1)2

can be found. Examples for these regions are presented
in Fig. 4. This figure shows the numerically calculated
regions of periodic dynamics (fora < 1) and the re-
gions of multi-band attractors (fora > 1). As one can
see, both structures are organized by the same prin-
ciples. This is the reason, why we denote the struc-
ture formed by multi-band attractors in the regionΠ as
bandcount adding, similar to the period adding struc-
ture existing fora < 1.
However, numerical experiments demonstrate that the
correspondence between both structures mentioned
above is not one-to-one. In fact within each region
Q|σ|+1

σ involved into the bandcount adding scenario
fine substructures can be detected, consisting of regions
with higher bandcounts. The existence of these regions
can not be explained based on the periodic orbits of the
period adding structure fora < 1. Instead we have to
consider the orbits which are nowhere stable (denoted
in the following as pure unstable orbits).
Let us consider as an example the family of regions
Qn+2
LRn , which belong to the first generation of the band-

count adding scenario. Along the middle line of each
regionQn+2

LRn we observe a sequence of regionsQKn
i

σn
i

with bandcounts

Kn
i = 1 + (n + 1) ·

i−1∑
k=0

2k = 1 + (2i − 1) (n + 1)

The boundaries of these regions are defined by inte-
rior crises caused by unstable periodic orbits with dou-
bled periods. For instance, the sequence of regions
with bandcounts7, 15, 31 . . . , (see Fig. 5) located
within the regionQ3

LR are caused by the pure unsta-

ble periodic orbitsOK1
i

σ1
i

with σ1
1 = LR, σ1

2 = L2R2,

σ1
3 = L2RLR2LR, σ1

4 = L2RLR2L2R2LRL2R2,
and so on. The following properties of these regions
are important:

1. The existence areas of all involved pure unstable

periodic orbitsOK1
i

σ1
i

originate from the same point

ζσ1
1

at the linea = 1.

2. The regionsQKn
i

σn
i

for increasingi are nested in

each other, that means the regionQKn
i+1

σn
i+1

is located

within the regionQKn
i

σn
i

.
3. The multi-band chaotic attractors within the region
QKn

i
σn

i
are influenced by all pure unstable periodic

orbits O
K1

j

σ1
j

with j = 1..i, whereby all points of

Figure 5. (a) Analytically calculated areasQ3
LR and Q7

L2R2 .

For the unstable orbitOu
L2R2 the existence boundaries (border col-

lision curves ξ
1,r/0,`

L2R2 ) are shown, as well as the curves of interior

crises η
r/`

L2R2 , caused by this orbit. (c) Similar results for the orbits

Q7
L2R2 andQ15

L2RLR2LR. (b) Bifurcation diagram along the line

µ = 0 (middle line of all regions involved into the bandcount dou-

bling scenario withinQ3
LR). (d) corresponding bandcount diagram.

these orbits are located in different gaps of the at-
tractor. That means for instance, that the attractors
within the regionQKn

4
σn
4

have16 gaps occupied by

the points of the orbitOK1
4

σ1
4

, 8 further gaps occu-

pied by the orbitOK1
3

σ1
3

, 4 gaps occupied byOK1
2

σ1
2

and2 gaps occupied byOK1
1

σ1
1

. Consequently, the
attractors have16 + 8 + 4 + 2 = 30 gaps and thus
K1

4 = 31 bands.

Since a sequence of interior crises forming the regions
QKn

i
σn

i
is caused by the orbits with doubled periods we

denote it as abandcount doublingcascade (although
the bandcounts within the cascade are not exact dou-
bled, like it is the case for the periods within a period-
doubling cascade). Note that bandcount doubling cas-
cades can be observed in such well-known systems as
the logistic map (where it follows each period doubling
cascade) and the tent map.
Of course, the same properties hold not only for the
regionsQn+2

LRn from the first generation of the overall
bandcount adding scenario, but for the regions involved
in all further generations as well.
Next let us consider the interior structure of the regions
Q|σ|+1

σ involved into the bandcount adding scenario be-
neath their middle curves. For simplicity we will pro-
ceed with the already mentioned example, namely with
the regionQ3

LR, keeping in the mind that the results we

discuss are valid for all regionsQ|σ|+1
σ . As shown in

Fig. 6.(a), varying the parameters along an arc around
the point ζLR within the regionQ3

LR we observe a
large number of intervals with bandcounts greater than
three. The scan curve in the parameter space we con-



sider here is given by the elliptic arca = 1 + Ra sinϕ,
µ = Rµ cos ϕ around the pointζLR with Ra = 0.05
andRµ = 0.005. For ϕ between approximately−80
and 80 degrees this arc is located within the region
Q3
LR, whereby the used value8

√
2 < 1+Ra < 4

√
2 im-

plies, that the scan curve we use intersects the regions
Q7

σ1
2
≡ Q7

L2R2 andQ15
σ1
3

but does not intersectQ31
σ1
4

and any further regions forming the bandcount dou-
bling cascade described above. Consequently, in the
middle part of Fig. 6 we observe the bandcounts7 and
15 but do not observe the bandcounts31, 63, and so
on. In Fig. 6.(b) the corresponding bifurcation diagram
is presented, whereby for the sake of clarity we show
as blowups only that parts of the state space where the
points of the attractors are located, and the large gaps
in between are skipped.
Straight forward calculation shows that within the re-
gionQ3

LR above the regionQ7
L2R2 there exists a se-

quence of regionsQ2n+7
L2R2(LR)n , and below the region

Q7
L2R2 a sequence of regionsQ2n+7

R2L2(RL)n with the
following properties:

1. Each of these regions originates from the point
ζLR.

2. The bandcounts in these regions are explained by
by 2n + 4 gaps where the points of the responsi-
ble unstable orbitOR2L2(RL)n are located in, and
two further gaps containing the points of the orbit
OLR.

3. Like the regionsQn+2
LRn andQn+2

RLn also the re-
gionsQ2n+7

L2R2(LR)n andQ2n+7
R2L2(RL)n represent the

first generation of the bandcount adding scheme.
Therefore, between each two consequent regions
Q2n+7
L2R2(LR)n andQ2n+9

L2R2(LR)n+1 there is a region
of attractors with4n+13 bands, whereby the peri-
odic orbit causing the interior crises of these attrac-
tors is OL2R2(LR)nL2R2(LR)n+1 . These regions
belong to the second generation of the bandcount
adding scenario within the regionQ3

LR, and so
on. All these regions originate also from the point
ζLR.

As one can see, in each from the infinite number of
the regions involved into the bandcount adding sce-
nario caused by unstable basic orbits a further band-
count adding scenario caused by pure unstable orbits
is nested. This nested bandcount adding scenario in-
volves a further infinite number of regions. The most
striking fact is, that this nesting process continues ad
infinitum, leading to a self-similarity of the parameter
space. Especially, along the middle line of each region
QK

σ we observe the bandcount doubling cascade caused
by the orbits with periods2i|σ|. The bandcounts of the
involved regions have the form

Ki = (K − |σ|) + |σ| ·
i−1∑
k=0

2k = K + |σ|(2i − 2)

In other words, in the middle of each regionQK
σ (with

Figure 6. Numerically determined bifurcation scenario within the

region Q3
LR. Shown are bandcounts (a) and bifurcation diagram

(b) along the elliptic arc around the pointζLR marked in Fig. 7.

Labeled are some of the bandcounts described in the text.

Figure 7. Analytically calculated regionsQ2n+7
L2R2(LR)n for n ≤

10 located within the regionQ3
LR. The elliptic arc marks the scan

curve used in the Fig. 6.

K ≥ |σ| + 1) there is a regionQK+2|σ|
ρ . The interior

crises leading to this regions are caused by the unstable
periodic orbitsOρ with period|ρ| = 2|σ|. Within the

regionQK
σ and beneath the regionQK+2|σ|

ρ there is

a family of regionsQK+(n+2)|σ|
σnρ , as well as regions

QK+|$|
$ , whereby the sequence$ can be obtained

from a pairσnρ, σn+1ρ with n ≥ 0 using the infinite
symbolic sequence adding scheme.

Remarkably, the reported scenario lead us to an un-
expected conclusion related to the boundary between
the regionsΠ of periodic andPch of chaotic behavior.
As already mentioned, at this boundary the pointsζσ

are located, whereby for each periodic orbitOσ sta-
ble within the regionΠ the regionPs

σ collapses to the
singular pointζσ. Now we state, that from each of
these points an infinite number of regionsPs

ρ origi-
nates, whereby the orbitsOρ are pure unstable and
undergo interior crisis bifurcations within the region
Q|σ+1|

σ . Hence, at each of the pointsζσ an infinite num-
ber of border collision bifurcation curves meets, as well
as a further infinite number of interior crises curves.
According to the notation introduced in (Avrutin and



Schanz, 2006), we conclude that each of these points
represents a codimension 2 big bang bifurcation point.

3 Summary
In this paper we considered a piecewise-linear discon-
tinuous map and described the structure of the chaotic
region in the 2D parameter space. It was shown,
that this region has a complex and presumably self-
similar structure caused by interior crises of one- and
multi-band chaotic attractors. The overall 2D struc-
ture is formed by two specific 1D bifurcation scenar-
ios, namely bandcount adding and bandcount doubling,
nested into each other. For both scenarios we demon-
strated, which unstable periodic orbits are responsible
for their formation. It is especially remarkable, that the
first level of the overall bifurcation structure is caused
by periodic orbits, which originate from the region of
stable periodic dynamics. In contrast to this, all further
levels are induced by pure unstable periodic orbits, this
means periodic orbits which are unstable for any pa-
rameter values. All these results can be summarized
by a few rules, which describe the self-similarity of the
2D bifurcation structures and allow to predict the band-
counts of the involved multi-band chaotic attractors up
to arbitrary high values. These rules, developed using
the map considered in this work, are applicable for a
more general class of dynamical systems, showing the
phenomenon of robust chaos. Especially the discon-
tinuous 2D normal form map investigated for instance
in (Duttaet al., 2006) shows the phenomenon described
in this work. Consequently it must also be the case for
all systems reducible to this normal form.
Finally, the results of this paper can be seen as a con-
firmation that the term of robust chaos, must be used
carefully, since chaotic attractors which are robust in
the sense of (Banerjeeet al., 1998) are not necessarily
robust in the sense of (Milnor, 1985).
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