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Abstract

In this paper the suitability of the phase control tech-
nique to control the forced Chua’s circuit is demon-
strated. According to this scheme a further sinusoidal
term is introduced in the forced Chua’s circuit at the
same frequency of the original driving signal, but with
a different phase. The experimental results discussed
in the paper demonstrate that the phase difference be-
tween the two sinusoidal terms can act as a control pa-
rameter for the circuit.
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1 Introduction

The techniques to control chaos can be classified in
feedback and open loop methods [1]. Feedback meth-
ods usually allow the system to be stabilized in any of
the unstable periodic orbits lying in the chaotic attrac-
tor, but require fast and accurate response to work prop-
erly. On the other hand, open loop techniques usually
exploit the effect of some (small) perturbations added
to the system to modify the final state of the controlied
dynamics.

Non-feedback methods have been mainly used to sup-
press chaos in periodically driven dynamical systems:

x =f(x,\) + Fcoswt (1

where x, f and F are vectors of the m-dimensional
phase space, and A is a parameter of the system. The
main idea of these non-feedback methods is to apply a
harmonic perturbation either to some of the parameters
of the system

x = f(x, A\(1 + g cos(rwt + ¢))) + Feoswt  (2)

or as an additional forcing
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x =f(x,\) + Feoswt +ucos(rwt + ¢)  (3)

where u is a conveniently chosen unitary vector.

The effectiveness of this type of methods has been
tested experimentally in different works [2; 3]. In the
first where these non-feedback method was explored,
the numerical and experimental explorations were es-
sentially focused on the role played by the perturbation
amplitude and the resonance condition r, but the role of
the phase difference ¢ was hardly explored. However,
in the Ref. [3], it was observed that the phase differ-
ence ¢ between the periodic forcing and the perturba-
tion had certain influence on the dynamical behavior of
the system. Furthermore, in the Ref. [4], the authors
have shown that ¢ plays a crucial role on the global dy-
namics of the system. Thus, it was clear that the role of
the phase difference is important in the global dynam-
ics of the system. The type of control based on varying
the phase difference ¢ in search of a desired dynami-
cal behavior is known as the phase control technique
[5]. In many systems a correct choice of the phase al-
lows to suppress chaos with a very small amplitude har-
monic perturbation. Phase control has been applied to
the Duffing system [4; 6; 7], to control intermittency in
a C'Oy laser [8] and to avoid escapes of a Helmholtz
oscillator [9].

Both non-feedback and feedback techniques have
been applied to the Chua’s circuit [10]. In this paper
we investigate the suitability of the phase control tech-
nique to suppress chaos in a driven Chua’s circuit.

2 The Chua’s circuit
In this paper, phase control is applied to the Chua’s

circuit, which can be described by the following dimen-
sionless equations [10]:



& = afy — h(z)]
y=z—-y+z 4
Z=—py—z

with h(z) = m1z +0.5(mo — ma)(Jx + 1| — |z — 1]).
From Eqgs. (4) the classical double scroll attractor
shown by the Chua’s circuit is obtained for the fol-
lowing parameters: o = 9, 3 = 14.286, v = 0,
mg = —1/7 and m; = 2/7. The double scroll at-
tractor shown by this circuit is reported in Fig. 1.

Figure 1. Projection on the plane £ — ¥ of the double scroll
Chua’s attractor. Horizontal axis: 500mV/ div; vertical axis

200mV/div.

Many different implementations have been proposed
in literature to realize the Chua’s circuit [10]. We fo-
cused on the so-called implementation based on State
Controlled Cellular Nonlinear Network SC-CNN [11].
Without discussing the details of the SC-CNN imple-
mentation of Chuas circuit, we wish to briefly recall
here the main ideas underlying this circuit. The SC-
CNN implementation of Chuas circuit is essentially a
compact and robust implementation of Chuas circuit
based on operational amplifiers. For each state vari-
ables of equations (4) an algebraic summer operational
amplifier and an RC filter are designed. The nonlinear-
ity is implemented by exploiting the natural saturation
of a further operational amplifier so that four opera-
tional amplifiers are needed to realize the whole cir-
cuit. In such a way an implementation where all the
state variables can be easily accessible is obtained.

Although the Chua’s circuit has been originally de-
signed as an autonomous circuit, several studies have
dealt with the case in which a forcing term is added to
this circuit. For instance, in [12] the sinusoidal forc-
ing is introduced by adding a new branch in the Chua’s
circuit (originally consisting of only two capacitors,
an inductor, a passive resistor and a nonlinear resis-
tor). The experimental investigation of this circuit car-
ried on in [12] revealed a great variety of bifurcation
sequences. In particular, period-adding bifurcations,
quasi-periodicity, hysteresis and intermittent behaviors
have been observed.

Another interesting result is the possibility of control-
ling many of these phenomena by adding a further si-
nusoidal generator in series with the previous one. In
[13], for example, a second sinusoidal forcing with a
different frequency is used. Experiments carried on in-
creasing the amplitude of the second forcing demon-
strate that a small amplitude is sufficient to induce dras-
tic changes in the behavior of the system. In particular,
starting from a chaotic behavior in absence of the sec-
ond forcing, Murali and Lakshmanan demonstrate that
periodic orbits (for instance of period-3) can be stabi-
lized adding a sinusoidal term with a small amplitude.
In the following we demonstrate that similar behavior
can be obtained by using two sinusoidal terms at the
same frequency but with different phase frequencies.

3 Phase control of the Chua’s circuit

In the forced Chua’s circuit considered in this paper
the sinusoidal term is added to the second equation of
Egs. (4). A further sinusoidal term is then added to
this equation. This “control” signal has the same fre-
quency of the driving signal, but has a different phase.
The Chua’s circuit driven by a periodic forcing can be
modelled by the following dimensionless equations:

i = aly — h(z)]

y=x—y+ 2+ Ansin(2r fut) — Acsin(2nfct + @)
i=—Py

(5)

with h(z) = myz 4+ 0.5(mg —my)(Jz+ 1| — |z — 1))
and where A,, sin{27 f,,t) represents the main driving
signal and A sin(27 f.t + ¢) with f. = f,, the further
harmonic perturbation used to control chaos. Our anal-
ysis has been carried out experimentally. As introduced
above, the Chua’s circuit has been implemented using
the state variable approach described in [10], which has
the advantage of an easy and flexible implementation
of the forcing terms. The experimental results are dis-
cussed in the next section.

4 Experimental results

In our experiments, the amplitude of this signal is
kept constant to a small value A, = 20mV (com-
pared to A,, = 240mV) and the phase difference ¢ is
varied. The other parameters of the system has been
fixed to: f,, = 4088Hz, a = 7.85, § = 12.195,
mg = —1/7, and my = 2/7. For such choice of
parameter, in the absence of the main driving signal
(i.e., A,, = 0) the system shows a chaotic behavior
with a single scroll attractor. When the driving signal
is applied (i.e., A,, = 240mV), the chaotic attractor of
the system is a double scroll attractor. The addition of
the small periodic control signal with zero phase does
not significantly affect the circuit dynamics. However,
tuning the phase difference parameter ¢ influences the
dynamical behavior of the system, and there exist suit-



Figure 2. Projection of the chaotic attractor obtained for ¢ = 0°

on the phase plane £ — —¥.

Figure 3. Projection of the chaotic attractor obtained for ¢p = 85°

on the phase plane T — —¥.

able values for which a stable limit cycle behavior is
obtained.

Fig. 2 shows the double scroll chaotic attractor exhib-
ited by the driven Chua’s circuit (5) when the phase
difference is ¢ = 0°. Fig. 3 shows the effect of a con-
trol signal with a phase difference equal to ¢ = 85°:
a period behavior is obtained (in particular, a stable
period-3 limit cycle). Finally, Fig. 4 shows the bifur-
cation diagram experimentally obtained. The bifurca-
tion diagram shows the local minima of the state vari-
able y with respect to ¢. It can be observed that, in
general, the phase parameter modulates the maximum
amplitude of the state variable y, and that there exist
several windows of periodic behavior, thus confirming
the suitability of the phase control method to suppress
chaos in a driven Chua’s circuit.

5 Conclusions

We have shown the robustness and the general nature
of phase control technique in the sense that the experi-
mental implementation in the Chua’s circuit, i.e., one of

Figure 4. Experimental bifurcation diagram with respect to the pa-

rameter (/)

most investigated circuits in nonlinear dynamics, con-
firms the results.

One important advantage of this scheme is its non-
feedback nature. Furthermore, the key role of the phase
in sclecting the final dynamical statc is very uscful from
a control point of view, since there is a large variety of
situations in which the modulation of the accessible pa-
rameters might be limited, and ¢ is an additional degree
of freedom that may be very useful.

In summary, we have shown that the phase control
scheme is very versatile and useful in a wide variety of
dynamical situations: to suppress local chaos, to con-
trol global dynamics as in the case of intermittency in
chaotic systems close to a crisis or to avoid escapes in
open dynamical systems.

References

S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D.
Maza, Phys. Rep. 329 (2000), 103.

R. Lima and M. Pettini, Phys. Rev. A, 41 (1990) 726.

R. Meucci, W. Gadomski, M. Ciofini, and E. T. Arec-
chi, Phys. Rev. E, 49 (1994) R2528.

7. Qu, G. Hu, G. Yang, G. Qin, Physical Review Letters
74 (1995), 1736.

F. T. Arecchi, W. Gadomski and R. Meucci, Recent Ad-
vances in Laser Dynamics: Control Synchronization,
41-78,2008 Ed. A. N. Pisarchik, Research Signpost,
Kerala, India.

J. Yang, Z. Qu, G. Hu, Physical Review E 53 (1996),
4402.

S. Zambrano, E. Allaria, S. Brugioni, I. Leyva, R.
Meucci, M.A.F. Sanjuan, ET. Arecchi, Chaos 16
(2006), 013111.

S. Zambrano, I.P. Marino, S. Euzzor, R. Meucci, ET.
Arecchi, M.A.F. Sanjuan, Physical Review E 74
(2006), 016202.

J.M. Seoane, S. Zambrano, S. Euzzor, R. Meucci,
ET. Arecchi, M.A F. Sanjuan, Physical Review E 78
(2008), 016205.

L. Fortuna, M. Frasca, M.G. Xibilia, Chua’s Circuit



Implementations: Yesterday, Today and Tomorrow,
World Scientific Publishing Company, 2009.

P. Arena, S. Baglio, L. Fortuna, G. Manganaro, IEEE
Transactions on Circuits and Systems-I, 42 (1995),
123.

K. Murali, M. Lakshmanan, IEEE Transactions on Cir-
cuits and Systems I, 39, (1992), 264.

K. Murali, M. Lakshmanan, IEEE Transactions on Cir-
cuits and Systems I, 40 (1993), 836.



