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Abstract
Since phase-locked loops (PLLs) were conceived

by Bellescize in 1932, their presence has become al-
most mandatory in any telecommunication device or
network, for being the essential element to recover
frequency and phase information. Several models
and implementation architectures appeared, follow-
ing the strong electronic and computation evolu-
tion that occurs daily. As modeling and designing
work together, considering the classical phase mul-
tiplier architecture, the nonlinearity is replaced by
a polynomial approximation, making the differen-
tial equation describing the loop dynamics similar to
the classical Düffing equation. As a result, the new
model (Düffing PLL) presents a robust equilibrium
performance and high immunity to accidental fre-
quency modulation (phase-jitter), even for the first-
order case, suggesting an interesting alternative im-
plementation of PLLs.
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1 Introduction
Phase and frequency synchronization problems are

present in electronic engineering since the first co-
herent modulation systems were developed, with the
phase-locked loop implemented by using discrete
components, performing the important function of
detecting the time basis coming from a remote point
[de Bellescize, 1932].

When the television systems were conceived, ver-
tical and horizontal signals must had been synchro-
nized by a periodic pulse, a function implemented
by using the PLL architecture [Wendt and Freden-
dall, 1943]. For the development of color television,
PLL were essential for synchronizing color beams
[Richman, 1954].
Essentially, all of these PLL systems were a closed

loop composed of a phase-detector (PD), a filter (F)
and a voltage-controlled oscillator (VCO), as shown
in Fig. 1. The PD compares the phase of the input
signal,vi(t), coming from a remote point, with the
phase of the local (VCO) oscillation,vo(t), produc-
ing an error signal that is filtered and controls the
phase of the VCO signal.
Around 1965, the first PLL integrated circuits ap-

peared, with all parts implemented with analogical
components; however, with very low cost due to the
wide range of their application [Best, 2007]. The
digitalization of the PLL functions started in 1970
with the PD implemented by an exclusive or (X-
OR) or charge pump circuit, presenting good perfor-
mance [Gardner, 2005].
These developments were simultaneous with the

digitalization of the telecommunication networks, in
which all of the standard solutions are supposed to
have synchronized time signals exchanged between
the nodes [Bregni, 1998; Lindsey et. al, 1985].
With the development of the integrated services, the

tendency to the digitalization of all network devices
became mandatory, and the PLL, in spite of follow-
ing the same Bellescize architecture, improved the
manner of processing signals, originating the digital
PLL (DPLL) circuits and converting the VCO func-
tion into digital [Bregni, 1998; Gardner, 2005; Meyr



and Ascheid, 1990].
As a consequence of the strong development of in-

tegrated circuits and digital filtering [Xiu et. al,
2004], the entire PLL started to be implemented
by using flexible architectures, with adequate signal
processing functions digitally implemented, generat-
ing the all-digital PLL (ADPLL) circuits, which is an
important component of the new generation of wire-
less devices [Staszewski and Balsara, 2015].
Considering that this evolution allowed to have

software implemented PLLs [Best, 2007], this work
presents a new model for synchronizing signals
based on the classical Bellescize’s architecture [de
Bellescize, 1932] of phase-locked loops. The idea
starts by observing largely studied architectures
[Best, 2007], with implementations present in almost
all telecommunication networks or devices [Bregni,
1998; Leonov et. al, 2015], considering that a phase-
detector compares the phases of two periodic sig-
nals, one coming from the exterior, withθi being the
phase ofvi(t), and another, from an internal oscilla-
tor, with θo being the phase ofvo(t).
Defining phase error,φ = θi − θo, the dynamics of

these devices is described by:

L(φ)−K sinφ = L(θi), (1)

with L being a linear operator andK representing
the operational frequency band of the loop [Leonov
et. al, 2015; Piqueira and Monteiro, 2006].
Inspired by an interesting work regarding eco-

nomic temporal series [Kulkarni, 2013] and an ex-
ercise from a classical textbook [Guckemheimer and
Holmes, 1983], a simple model for PLLs, which re-
places the nonlinear term of equation (1) by a poly-
nomial approximation is proposed:

φ̇ = θ̇i + αµ2φ+ 2µφ3
− φ5, (2)

with α representing the phase detection gain, andµ,
with angular frequency dimension, representing the
central frequency of the operational range of the PLL
[Leonov et. all, 2015b].
Considering the similarity between equation (2)

and Düffing equation [Guckemheimer and Holmes,
1983], the model proposed here will be called “Düff-
ing PLL" (DF-PLL) and its main properties are dis-
cussed.
In the next section, the influence of parametersα

and µ along with the bifurcations in the DF-PLL

Figure 1. PLL block diagram

hold-in range [Leonov et. all, 2015b] are analyzed.
The observed robustness of the equilibrium state
guarantees that the zero or constant phase-error state
is reachable, for any physical parameter combina-
tion.
Following this reasoning, the phase-jitter phe-

nomenon is modeled as a periodic perturbation of the
equilibrium state, with frequencies about ten times
higher thanµ. Numerical simulations show that the
DF-PLL rejects jitter in a very satisfactory manner.
Lastly, some hints and conclusions are presented.

2 Bifurcation of the Equilibrium States
The DF-PLL hold in range is expressed by the

equilibrium state of the dynamic equation (2), with
θ̇i = 0, i.e., when a phase step is applied to the input.
Consequently, this equilibrium state corresponds to
the roots of the polynomial:αµ2φ+ 2µφ3

− φ5.
As real physical situations present positive values

for the central frequencies of the operational range
(µ > 0), qualitative dynamical behavior of the equi-
librium states depend only on aα that can assume
any real value.
Starting withα < −1, it can be seen that there is

only one equilibrium state,(φ̇, φ) = (0, 0) which
is asymptotically stable, as Fig. 2 shows forα =
−2 andµ = 2. The asymptotically stability of the
equilibrium state is derived from the calculation of
the derivative of the vector field (2).
Increasingα, when it pass throughα = −1, the

point (φ̇, φ) = (0, 0) remains asymptotically stable
and two non-hyperbolic equilibrium points,(φ̇, φ) =
(
√
µ, 0) and(φ̇, φ) = (−

√
µ, 0), appear, as Fig. 3

shows forµ = 2.
For−1 < α < 0, there are five equilibrium points:

(φ̇, φ) = (0, 0), (φ̇, φ) = (
√

µ(1 +
√

1 + α), 0)

and (φ̇, φ) = (−
√

µ(1 +
√

1 + α), 0), asymptoti-

cally stable;(φ̇, φ) = (
√

µ(1 +
√

1− α), 0), and

(φ̇, φ) = (−
√

µ(1 +
√

1− α), 0), unstable, as Fig.
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Figure 2. DF-PLL dynamical behavior of the equilibrium state

for α = −2
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Figure 3. DF-PLL dynamical behavior of the equilibrium states

for α = −1
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Figure 4. DF-PLL dynamical behavior of the equilibrium states

for α = −0.5

4 shows forµ = 2.
Whenα pass throughα = 0, a new bifurcation oc-

curs with(φ̇, φ) = (0, 0) becoming non-hyperbolic;

(φ̇, φ) = (
√

µ(1 +
√

1 + α), 0) and (φ̇, φ) =

(−
√

µ(1 +
√

1 + α), 0) remaining asymptotically

stable; (φ̇, φ) = (
√

µ(1 +
√

1− α), 0), and

(φ̇, φ) = (−
√

µ(1 +
√

1− α), 0) disappearing, as
Fig. 5 shows forµ = 2.
Consideringα > 0, (φ̇, φ) = (0, 0) becomes unsta-
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Figure 5. DF-PLL dynamical behavior of the equilibrium states

for α = 0
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Figure 6. DF-PLL dynamical behavior of the equilibrium states

for α = 1.50
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Figure 7. DF-PLL equilibrium state: bifurcation diagram

ble; (φ̇, φ) = (
√

µ(1 +
√

1 + α), 0) and (φ̇, φ) =

(−
√

µ(1 +
√

1 + α), 0) remain asymptotically sta-
ble, as Fig. 6 shows forµ = 2.
The described results show the robustness of the

locking process of DF-PLL, since the dynamic be-
havior of the phase error presents at least one asymp-
totically stable equilibrium state, for any value ofα.
Summarizing these points, Fig. 7 shows the bifurca-
tion diagram related to the equilibrium states for the
DF-PLL dynamics, consideringµ = 1.
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Figure 8. DF-PLL perturbation rejection
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Figure 9. Jitter perturbation

3 Perturbation Rejection

For a precise time extraction strategy, the syn-
chronization process provided by a PLL must re-
ject phase variations originated by noise and imper-
fections of the transmission media, either long term
(wander) or short (jitter) term ones [Meyr and As-
cheid, 1990; Piqueira et. al, 2005; Piqueira and Cali-
gares, 2006].

The evaluation of the DF-PLL perturbation was per-
formed by using MATLAB-Simulink [Hanselman
and Littlefield, 1996], starting with a zero phase
error and considering the input phase,θi periodic
with variable frequency. The parameters were ad-
justed for an asymptotically stable equilibrium situ-
ation withα = −1.5 andµ = 2rad/s.

The gain measure was defined byG =
20log10

phaseerroramplitude

perturbationamplitude
(dB) and the result is

shown in Fig. 8. As it can be noticed, in the worst
case, the phase error is8dB attenuated related to the
perturbation.

Besides, in the critical regions, wander (µ <
0.1rad/s) and jitter (µ > 10rad/s), the rejection in-
creases drastically, as shown in Fig. 9 and 10, guar-
anteeing a good performance for the DF-PLL.
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Figure 10. Wander perturbation

4 Final Hints
A new architecture (DF-PLL) was presented for the

detection of time signals, based on the Düffing non-
linear equation. It was shown that DF-PLL presents
a robust dynamics, concerning to equilibrium points.
Besides, DF-PLL presents a good performance

when phase perturbations appear in the phase input,
either in wander or in jitter case.
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