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Abstract
In this paper we discuss some methods of parametric

control of the correctness for numerical optimization of
dynamics of a beam of charged particles.
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1 Introduction
Over the last years, different effective algorithms have

used for solving of accelerator optimization problems.
In general the most of approaches and methods are
based on numerical methods for simulation of the dy-
namics as well as the implementation of the optimiza-
tion process (see, for example, [Andrianov, 2004a; An-
drianov, 2004b; Makino, Berz, 2014; Proc. BDO’2008,
2008; Streichert et al., 2012; Gong and Chao, 2012]).
Any numerical calculations (both for dynamics and

for implementing the optimization process) can lead to
additional errors, which may substantially distort of the
results. Therefore, it is necessary to ensure the imple-
mentation of additional check as the accuracy of calcu-
lations of the dynamics as well as for the optimization
process itself.
First of all, it should be noted the problem of simulat-

ing long-term evolution of the particle beams, as well
as the study of the influence of various effects (fringe
fields, distortion parameters controls, etc.) on the fea-
tures of the behavior of the beam. In particular, the
problems of modeling the dynamics of polarized beams
(for example, to measure the electric dipole element
(EDM) [Lehrach, 2012]). Particular attention should
be paid to non-linear parasitic effects, which can sig-
nificantly distort the quality of the control system.
In this paper, we consider some methods of quality

control for the simulation process. The proposed meth-
ods are based on the matrix formalism for Lie algebraic
methods [Andrianov, 2004a; Andrianov, 1997] that al-

lows efficient use both numerical as well as symbolic
methods (for example, using the package Mathemat-
ica).

2 Formulation of the Problem
In this paper we consider some problems of modeling

of multicomponent magnetic and/or electrostatic accel-
erators. It is known that such objects are complex and
consist of a large number (up to tens of thousands)
of different controls. In general case the correspond-
ing devices generate controlling electromagnetic fields,
which ensure the desired behavior of the beam. Here
we mean different kinds of requirements for the parti-
cle beam. Since each control element is responsible for
different effects, then their combination may result to
complex effects, including to undesirable behavior of
the beam. It should be noted that the various compo-
nents of the control field can lead to a variety of effects
in the behavior of the beam, and it is often difficult to
understand exactly what kind of characteristics of the
control field create certain effects.
It is these problems make it necessary to use not only

the correct models for the control fields, but and to
identify possible undesired effects with the purpose to
their further correction or (full/partial) compensation.
It should be noted that usage of only the numerical
methods for solving the corresponding evolution equa-
tions cannot effectively allow such a study. It is there-
fore, in this paper we focuse not only to the symbolic
construction of the corresponding the solutions of evo-
lution equations, but also on construction of exact or
approximate invariants. In general case the correspond-
ing control devices generate control electromagnetic
fields, which ensure the desired behavior of the beam.
Here we mean different kinds of requirements to the
beam which can be described using different conditions
in the form of so called invariants. Indeed, if in the
process of modeling we are will observe a significant
distortion of the values of these invariants, then this in-
dicates that either our computational methods do work
incorrectly or we are not taking into account some other



94 CYBERNETICS AND PHYSICS, VOL. 3, NO. 3, 2014

real effects.
In this paper, we propose testing the computational

procedures using the exact and/or approximate (up to
the considered order of nonlinearity) invariants [An-
drianov, 2001a; Andrianov, 2001b]. It should also
be noted that the special visualization instruments can
play the importance role in similar investigations, in
particular when using appropriate tools for 2D- and 3D-
animation of computed data.

3 A Short Introduction to the Matrix Formalism
for Lie Algebraic Tools

In this section, we discuss some methods for solving
nonlinear dynamical systems that allow a natural appli-
cation of the methods of perturbation theory.

3.1 The Evolution Operator as Instrument
of Description of Dynamical Systems

It is known that for any dynamical system we can
write

X(t) = M(U; t|t0) ◦X(t0), (1)

where X(t) – phase vector describing the state of the
dynamical system (in our case of the beam) at the time
of s, M(U; s|s0) – the evolution operator of the dy-
namical system the system under study (in general,
nonlinear), U – vector of control “parameters”, s, s0
– the current and initial values of the independent vari-
able (e.g. distance, measured along the reference tra-
jectory).
In general, the dimension of U may be infinite (for

example, in the case of controlling using the electro-
magnetic field). In the case of the different problems
(electrodynamics, biodynamics, and others) it is possi-
ble also to enter special objects, such as state matrices
XN = {X1, . . . ,XN}, N >> 1, the distribution func-
tion f(X, t), etc. It is known that in many number of
problems we need consider the interparticle interaction.
In this case, the evolution operator in equation (1) will
depend on the phase vector X(s) or XN (s).
All of this leads to the need for adequate methods for

describing the corresponding dynamical systems. Con-
sidering that the dynamic system control is defined by
the equation (1), its solution can be written using the
analogue of Dyson time-ordering operator (see., for ex-
ample, [Dyson, 1949]).

M(X; t|t0) = T exp


t∫

t0

[H(τ), ◦] dτ

 . (2)

It should be noted, however, that for practical calcula-
tions this presentation is not convinient, and that is why
for practical investigations is commonly used so-called
Magnus representation [Andrianov, 2004a; Magnus,

1954]. In accordance with this approach, we can turn
to the operator of the evolution of the dynamical sys-
tem in the form of an exponential operator with a new
generating operator W(t|t0)

M(t|t0) = exp (W(t|t0)) . (3)

The equality (3) allows us to represent the solution in
the form of a usual (non time ordered) operator expo-
nential from a new operator (W(t|t0), which can be
calculated up to the desired order of nonlinearity ac-
cording to the well known formula

W(t|0) =
t∫

t0

V(τ)dτ + α1

t∫
t0

V(τ),
τ∫

t0

V(τ ′)

 dτ+

+ α2
1

t∫
t0

V(τ),
τ∫

t0

V(τ ′),

τ ′∫
t0

V(τ ′′)dτ ′′

 dτ ′

 dτ+

+ α1α2

t∫
t0


V(τ),

τ∫
t0

V(τ ′)dτ ′

,
τ∫

t0

V(τ ′)dτ ′

dτ+. . . (4)

Using the well-known formula Campbell-Baker-
Hausdorff and calculating the corresponding integrals,
we can get an idea about the evolution operator up to
the desired order of nonlinearity. It should be noted that
the respective computations may be implemented both
in numerical and symbolic presentations (see, e. g.,
[Andrianov, 2010a]).

3.2 The Matrix Representation of the Evolution
Operator

According to [Andrianov, 2004a; Andrianov, 1997]
we can write the presentation of eq. (1) in the Poincare–
Witt basis 1,X,X[2], . . . ,X[n], . . .:

X(t) =

∞∑
k=0

M1k(t|t0)X[k]
0 , (5)

where M1k are matrices n ×
(
n+k−1

k

)
in general case

may depend on the phase vector X(t) (for example, in
the case of high-intensity beams). Namely these ma-
trices can be evaluated up to necessary order both in
symbolic and numerical forms [Andrianov, 2004a].

4 Some Necessary Remarks
In the papers [Andrianov, 2001a; Andrianov, 2001b]

examined methods of calculating both exact and ap-
proximate invariants generated by operators of evolu-
tion. It should be noted that an important role is played
by the symplecticity property of Hamiltonian systems,
which is inherent in any object that obeys the Hamil-
tonian equations of motion, regardless of their particu-
lar properties. In the case of distributed dynamic sys-
tems (e.g., charged particle beams in accelerators and
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in plasma) in the modeling process dynamics we must
ensure this property for each object, which significantly
complicates both the modeling process itself and the
search for optimal solutions.
With this in mind, we can formulate the following

stages of the optimization process:

1. creation of the mathematical model of the investi-
gated dynamic process;

2. formulation of exact and approximate invariants
as properties for ensemble of particles (the prop-
erty of symplecticity) and single-particle (the law
of conservation of energy) and so on;

3. the choice of numerical and symbolic solutions in
accordance with the used formalization;

4. debugging methods using test problems;
5. carrying out computational procedures for the

modeling of real processes and objects.

All these stages are closely related with the mathemat-
ical tools used in the particular investigation. Indeed, in
many practical problems need find nonlinear evolution
of some systems (in space and/or in time) of complex
dynamic systems, while ensuring the preservation of
certain characteristics inherent in these dynamic sys-
tems. Therefore, we should be given special attention
to the choice of mathematical and computational tools
which are used for simulation. In this paper, we de-
scribe a unified approach, based on the matrix formal-
ism that allows a natural way to describe the dynamics
of these processes, and the management and control of
the correctness of the research process.
The concept of evolution operators in terms of oper-

ator Dyson is primarily a qualitative method. But at
present there exists a family of methods for construc-
tive presentation of the corresponding operators. These
techniques include three approaches. The first (devel-
oped in the works K.L.Brown [Brown, 1982]) not only
was used in many papers, but and found its realiza-
tion in a variety of software packages, among which
we should highlight first of all package MAD [Iselin,
1994] and package COSY Infinity [Berz, 1990]. It
should be noted that COSY Infinity is also based on the
ideology of the tensor representation of nonlinear ef-
fects (model Taylor), but its computing core is based on
differential algebra, which significantly increases com-
putational performance.
The third approach suggested in papers of Alex Dragt

(See, eg, [Dragt, 1994]), is based on the use of Lie
groups and algebras and is realized in the package
MARYLIE 3.0. There are also a number of packages,
but they are also mainly based on the Taylor series. Be-
sides there are rather many packages which can con-
sidered as superstructures over existing mathematical
approaches. In this paper we base on the method pro-
posed in the article S.N.Andrianov [Andrianov, 1997].
Formally, it also uses a representation of the equa-

tions of motion in the form of a Taylor series, but
the construction of the solution is based on the ma-
trix formalism, according to which the non-linear evo-

lution equation can be written in the form of an infinite-
dimensional linear ordinary differential equation. This
view allows us to use well developed numerical and an-
alytical methods for solving of similar equations. Be-
sides this we obtain a possibility to use of methods and
tools of symbolic mathematics for construction of com-
putational algorithms, which not only greatly improves
the computational efficiency, but gives possible natu-
rally way to construct invariants (exact and approxi-
mate), but also to incorporate them into the computa-
tional process. We should also note that the usage of
the matrix representation of the necessary facilities al-
lows significantly easier keep track of these or other
effects that influence the dynamics of the beam.

5 Control and Correctness of Numerical
Calculations

In this section we briefly describe the methods for
quality control of the correctness of the calculations.
Any numerical algorithm must be verified on the rele-
vant problems with the exact solution. As an example,
we demonstrate that the proposed matrix formalism re-
ally allows us to build not only the correct solutions
(with clearly fixed estimates for accuracy of calcula-
tions), but also to obtain exact solutions of nonlinear
equations (see, for example [Andrianov, 2004a]).

5.1 The Exact Solutions as a Control
of Computational Processes

As a simple example, consider the problem of solving
a scalar nonlinear differential equation with a second-
order nonlinearity

dx

dt
= K2 x

2, x ∈ R1. (6)

In particular, this equation describes dimensional mo-
tion of particles in a thin sextupole where K2 – a
strength of the sextupole field. As is known, the so-
lution of equation (1) with x(t0) = x0 has the form

x =
x0

1−K2(t− t0)
, t ≥ t0, (7)

whose graph is shown in Fig. 1. After applying to
the equation (1) ideology the matrix formalism for Lie
transformations the corresponding propagator Lie for
the equation (1) takes the form

M(t|t0) = exp

{
(t− t0)K2 x

2
0

∂

∂x0

}
.

After simple algebraic manipulations (see., for exam-
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Figure 1. An approximate form the graph of (1)

ple [Andrianov, 2004a]), we obtain

M◦ x0 =
∞∑
k=0

(t− t0)
k

k!
Pk1
2 xk+1

0 =

=
∞∑
k=0

(K2(t− t0))
k

k!
k!xk+1

0 =

=
∞∑
k=0

(K2(t− t0))
k
xk+1
0 . (8)

After summation we find

M◦ x0 =
x0

1−K2(t− t0)x0
.

As expected, the solution coincides with the expression
(2).
As a second example, consider the system of Hamil-

tonian equations of the following form

{
dx
dt = a x2,
dPx

dt = b x2 − 2 a xPx,

Its solution X = X(X0; t | t0) = (x, Px)
∗:

X =
X0 + P2

2X
[2]
0 + P3

2X
[3]
0 + P4

2X
[4]
0

1 +Q∗
1X0

.

where the matrices and the vector can be computed us-
ing the above described method

Q1 = −(t− t0)

(
0
a

)
, P2

2 = a(t− t0)

(
0 3a −b
0 0 0

)
,

P3
2 = a(t− t0)

2

(
0 0 3a −b
0 0 0 0

)
,

P4
2 =

a2(t− t0)
3

3

(
0 0 0 3a −b
0 0 0 0 0

)
.

The similar solutions allow us to control the calcula-
tions carried out both in the analytical and in numerical
form. In particular, at the stage of debugging software
developed as a model of dynamic systems is necessary
to use complex (primarily non-linear) dynamical sys-
tems, which have the exact solution. This allows to
properly choose the details to the used numerical meth-
ods, for example, the step size of discretization of the
independent variable (”time”), verify the energy con-
servation for conservative systems, etc.

5.2 The Exact and Approximate Invariants
In the previous subsection we briefly described the

method of controlling of correctness of used approx-
imate calculation procedures. Besides this we should
have some instruments for additional control of the
conservation of exact and approximate invariants in-
herent to the dynamical process under study. It should
be noted that these invariants can divided into two
classes: kinematic and dynamical invariants [Andri-
anov, 2004a].

Definition 1. The own kinematic invariant of the dy-
namical system is named a function I(X, t) that does
not change its value at any transformations generated
by the dynamical system.

Let I(X, t) is a kinematic invariant and {M} is a map
which are generated by some class of dynamical sys-
tems (e.g. Hamiltonian systems) then formally one can
write {M} ◦ I(X, t) = I(X, t),∀X, t.
As an example, we can specify the symplectic prop-

erty, according to which for Hamiltonian systems there
exist the well known identity – the condition of sym-
plecticity. Let us introduce the following designation

M(X, t | t0;M) = M(X; t | t0) =
∂M(t | t0;H) ◦X

∂X∗ ,

then the matrix M satisfies to the well known symplec-
ticity identity

M∗(X; t | t0)J(X)M(X; t | t0) = J(X).

Failure to comply with this identity leads to a substan-
tial violation of the qualitative and quantitative proper-
ties, and as a result, to incorrect results of mathematical
(theoretical) and computational modeling.
Using methods published in [Andrianov, 2004a; An-

drianov, 2001c] one can construct a chain (in general
case an infinite chain) of linear algebraic equations for
elements of matrices which represent the step-by-step
matrix presentation of the evolution operator M which
generated by the our dynamical system. This allows
us guarantee that the truncated series (containing a fi-
nite number of terms in accordance with the order of
nonlinearity) ensures strict compliance with the con-
ditions of the symplecticity. It should also be noted
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that the degree of closeness of the solutions can be es-
timated in any order of nonlinearity (see., for example,
[Andrianov, 2012]). Here it should be noted that the
corresponding estimates are universal, in other words
do not depend on the trajectory of the object of control
(in this case the particles). Thus we can obtain an es-
timate of the approximate evolution operator itself for
an arbitrary initial phase coordinates of the beam par-
ticles (see, for example, [Andrianov and Kulabukhova,
2013].
In other words, for each initial state of a conservative

dynamical system conserved a value of energy which
corresponds to the selected particle trajectory (see,i. e.
[Zhong and Marsden, 1988]). The energy conservation
law is an example the second type of invariants – the
own dynamic invariant.

Definition 2. The function I(X, t), which is conserved
under the transformations generated by a particular
dynamical system is named an own dynamic invariant
of the dynamical system.

In the case of the law of conservation of energy, we ob-
tain a map that displays a given initial state of the parti-
cle in a current one. Thus the corresponding evolution
operator depends on the initial energy of a particular
particle.

6 Some Remarks on the Optimization Procedure
Described in the previous sections matrix formalism

allows not only to efficiently carry out calculations on
the dynamics of particle beams, but also to search for
the optimal values of the control parameters, providing
not only a given behavior of the beam as a whole, but
also some specific beam characteristics which defined
in the structural control elements. It should be noted
that in general such problems are multi-purpose tasks
of multiparameter optimization. It is this fact leads to
the need for choosing the technologies that can effec-
tively address such problems, especially with the use of
parallel and distributed computing resources. In partic-
ular, as an example of such technologies, we can con-
sider the so-called multi-agent systems (see., for ex-
ample, [Camelia Chira, 2007],[Andrianov, 2015]). It
should be noted that it is multi-agent technology can
be adequately implemented it using the matrix formal-
ism described in the previous sections. The use of ex-
act and approximate invariants allows you to enter ad-
ditional criteria for optimization problems, which im-
proves the efficiency of the search for optimal solu-
tions as the optimization process will guarantee that the
conditions of the correctness performed during com-
putational procedures. It should also be noted that
the methods of global optimization [Gong and Chao,
2012], [Andrianov et al., 2011] also require specialized
software which is adequate to mathematical methods
used in modeling the dynamics of the particles in the
accelerator systems.

7 Conclusion
In the paper we considered some problems of math-

ematical and computer methods of modeling of long
time evolution of the beam in cyclic accelerators. The
described approach is based both on using of some ex-
act and approximate solution methods for beam mo-
tion equations and also on a paradigm of parallel and
distributed computational experiments. All the pro-
posed tools are realized in an analytic form (in the
form of appropriate formulas and algorithms, derived
using the such packages of computer algebra packages
as Maple and Mathematica, see, for example, [Andri-
anov, 2010b; Andrianov and Kirsanov, 2014]), and also
numerical methods that implement the proposed ap-
proaches. Testing of the respective software products
demonstrated sufficiently effectiveness in solving some
practical problems.
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