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Abstract: The aim of this paper is to introduce a method of dynamic analysis for rotor systems based on 
wavelet transformation of oscillations. Comparing introduced and traditional analysis methods, 
advantages of wavelet analysis at the random impulsive loading and quasi-stationary motion regimes are 
opened. As the starting system an unbalanced rotor on oil - film journal bearings is considered. 
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1. INTRODUCTION 

Amplitude detection and spectral analysis are well-known 
methods in order to analyze the vibrosignals. By amplitude 
spectrum the researchers fix an existence of resonant, impact-
excited, transient and unstable rotor vibration. Sometimes 
this way is called by «trajectories method» (Komarov, 2005). 
However the conclusion concerning vibration type through 
signal level history is unobvious if a decay or rising of 
motion amplitude is quasi-stationary. As a rule by frequency 
spectrum the researchers appreciate a technical state of 
system (Rusov, 1996). In particular it may be done in order to 
discover next defects: unbalance, impact excitation and «oil 
whirl»1 of rotor (Oravsky, 2001). However spectral analysis 
based on Fourier transformation is not effective for 
investigation of the random impulsive loading and defects 
development and transient processes. Disadvantages of 
traditional analysis methods may be overcome using the 
wavelet analysis penetrated deep into practice of digital 
signal processing, for example look through the language of 
the  computing MatLab software system.

2. ESSENCE OF WAVELET ANALYSIS 

As is well known Fourier transformation replaces the time 
representation of vibrosignal f(t) by its frequency 
representation f(ω) that is expansion in infinite sinusoid with 
different frequency: 
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where f(t) is virgin signal, ω is frequency, t is time, f(ω) is 
spectral expansion of virgin signal. Wavelet transformation 
of function f(t) consists in its expansion in set of scalable and 
shifted versions of small wave: 
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1 Oil whirl is oil-induced subsynchronous forward whirl with 
rotor half-speed typically varying from 0.46ω to 0.49ω. 

where f(t) is virgin signal, ψ  is basic (small) wave function 
or wavelet dependent on parameters a and b, which  
accordingly define scale and shift of time. 

For signal f(t) having pronounced oscillatory form it is quite 
reasonable to choose wavelet close to sinusoid. For example 
look at the Morlet’s wavelet (Fig. 1). If to interpret wavelet 
simplistically as the modulated sinusoid, then the sinusoid 
frequency will equal average wavelet frequency.  

In the general case (when the time dependence of wavelet is 
well nonharmonic) determination of average frequency 
requires the signal processing and it is realized by iteration 
methods (Djakonov, 2002). 
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Fig.1. Morlet Wavelet ψ(t)=exp(-t2/2)cos5t 

 
The wavelet transformation result for vibrosignal is two-
dimensional array of coefficients in coordinate terms «time 
scale a, time localization b». It is named wavelet spectrum 
and contains information about a change of frequency and 
amplitude for different components of signal in time.  

The wavelet spectrum for function f(t) is a surface in the 
three-dimensional space. More often two-dimensional 
visualization as a projection of coefficients C(a,b) on the 
plane (a,b) is used by color shades. The highlights 
corresponds to great coefficients of wavelet transformation 
C(a,b). They are located near features of function f(t) what 
allows to discover all features of vibrosignal. 

     



 
 

 

3. MODEL OF ROTOR SYSTEM 

Two examples of wavelet analysis for rotor oscillations will 
be described later. For a simple let’s consider the vertical 
symmetrical rigid rotor with single disc on the oil-film 
journal bearings (Fig. 2). Also let’s take into account the 
most widely distributed operational conditions, which are 
unbalance, impact excitation and oil whirl of rotor. 

 
Fig.2. Used model for rotor-bearings system 

Involved nomenclature includes: x1, y1 are coordinates of 
rotor journals О1; x2, y2 are coordinates of centre of rotor 
gravity О2; ε=О1О2 is rotor unbalance, φ is position angle for 
rotor displacement e=ОО1; Pe and Pφ are hydrodynamic 
forces of oil-film. 

Equations for lateral oscillations of system (Fig. 2) have been 
defined in the Cartesian coordinates, taken into account an 
impulsive loading expressing the random contacts between 
rotor and frame in the form of external shock F, and only the 
constant rotor speed ω. The latter means that a drive of 
infinite power is supposed behind. On basis of these 
assumptions and expressions x2=x1+εcosωt, y2=y1+εsinωt the 
corresponding motion equations of system are as follows: 
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Hydrodynamic forces Pe and Pφ have been described by well 
known hypothesis (Keljzon et al., 1982): 
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where μ is viscosity of oil-film, δ is value of radial clearance, 
L is length of journal bearing, R is journal radius. 

Function F=F(t) characterizing type of shock loading 
(Banakh et al., 2008) have been described in the form of three 
half-sinusoidal impulses (Fig.3) i.e. for contact force the 
conditions were fulfilled: 
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where H is impulses’ level, t is time, τ is impulses’ length. 
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Fig.3. Used impulsive loading 

In order to equations (1) and (2) and (3) have organized the 
closed loop system, the displacement e and position angle φ 
must be expressed through coordinates of rotor centreline 
x1,y1: 
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Integration of combined equations (1) - (4) at the system 
parameters m=1.5kg, ε=60μm, δ=100μm, L=10mm, 
R=15mm, ω=1000rpm, μ=8·10-3N·s/m2 without and with 
random impulsive loading (H=10mεω2, t1=0.6s, t2=0.77s, 
t3=0.89s, τ=0.002s, look at the Fig. 3)  by  Runge-Kutta 
method has allowed obtaining typical trajectories, sweeps, 
frequency spectrums and wavelet spectrums for rotor 
oscillations corresponding different operational conditions 
(Fig.4 and Fig.5). 

4. SPECTRAL AND AMPLITUDE ANALYSES AND 
WAVELET ANALYSIS OF ROTOR VIBRATION 

Analyzing classical frequency spectrum, the conclusion may 
be done about an existence of unbalanced effect and oil whirl 
for rotor only.  

Qualitatively obtained spectrums are very similar against 
each other, there are typical peak near to rotor speed ω and 
peak near to frequency ½ω. 

Analyzing trajectories and sweeps of vibration, the 
conclusion may be done about an existence of impulsive 
loading. At second case (Fig.5) there are typical straight-line 
portions of rotor motion. 

However it is impossible to conclude anything concerning 
development dynamics of these processes by the amplitude 
spectrum (on basis of trajectories and sweeps) and by 
frequency spectrum (on basis of Fourier transformation of 
vibration) especially. On the contrary it is possible by means 
of wavelet transformation of rotor oscillations performed 
along one lateral direction. 

Any wavelet spectrum marks the signal length b or time by 
horizontal axis. The scales a, which are inversely 
proportional to frequency actually, are marked by vertical 
axis there. Color of wavelet spectrum show values of wavelet 
coefficients C(a,b) or amplitude of harmonics in other words. )τ τ
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Fig. 4. Trajectory, frequency spectrum, sweep and wavelet 
spectrum of rotor vibration at the constant unbalance and 
development of process «oil whirl» 
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Fig. 5. Trajectory, frequency spectrum, sweep and wavelet 
spectrum of rotor vibration at the constant unbalance and 
development of process «oil whirl» and three random impacts 

Analyzing obtained wavelet spectrums by colour intensity, 
one can see from Fig. 4 and Fig. 5 that the amplitude of 
subharmonic with frequency ½ω (at the 280th scale 
approximately) rises in time. It means the development of 
process «oil whirl». Consequently analyzed rotor motion is 
unstable. Opposite if the highlights would be constant, as in 
the case of fundamental harmonic with frequency ω (at the 
140th scale approximately), or if the highlights would decrease, 
then it would testify to stability or disappearance of process 
accordingly. 

Note that at the shock in wavelet spectrum (Fig.5) a high-
frequency component appears in the form of triangles at the 
impact moments. It allows determining the number and 
periodicity of impacts exactly. 

5. CONCLUSIONS 

1. One can define by wavelet spectrum the frequency content 
of vibrosignal as well as the time action domains for each of 
frequency components. And so one can state wavelet 
transformation and Fourier transformation supplement each 
other usefully. 

2. Wavelet-analysis of vibration in the practice by means of 
human observation or on the basis of image identification 
methods allows to judge dynamic stability of rotor in the 
pseudo-stationary (quasi-stationary) case. 
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