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Abstract
A continuous approximation of a second-order,

piecewise-linear system, modeled as a discontinu-
ous system, is presented. The discontinuous sys-
tem includes a signum function, approximated by a
saturation-type function, whose complex dynamics is
analyzed based on some recent results. A numerical
comparison between the analytical solutions of both
systems shows the accuracy of the approximation.
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1 Introduction
Piecewise-smooth (PWS) systems have attired the

attention of many researchers in the last years ([di
Bernardo et al, 2008], [Filippov, 1988]). They de-
scribe with good accuracy important phenomena and
practical systems, like friction, impacts, commutation,
sliding motion, mechanical, electronic, and even bio-
logical systems ([Brogliato, 1999],[di Bernardo et al,
2008]). In consequence, they appear frequently in sev-
eral mathematical fields, in control theory and engi-
neering, and so on. They can exhibit particular be-
haviors like equilibria intervals, sliding motion, non-
typical bifurcations (border collision, grazing, sky blue,
sliding, etc.), and chaotic dynamics.
An important class of PWS systems can be described

by

ẋ = Fi(x), if x ∈ Si, i = 1, · · · ,m

where Si, i = 1, 2, · · · ,m are open, disjoint sets in Rn

such that ∪m
i=1S̄i = Rn, where S̄i is the closure of Si.

The border between the adjacent sets Si and Sj can be
given by a function Hij , that is,

Σij := S̄i ∩ S̄j =
{
x : Hij (x) = 0

}
,

i ̸= j = 1, · · · ,m.

In general, Fi and Hij are smooth; in this paper we will
suppose also that they are linear.
These systems have been analyzed with several tools,

like the convex method of Filippov [Filippov, 1988].
Some conditions to have diverse kinds of typical bi-
furcations of discontinuous systems are given in [di
Bernardo et al, 2008].
A different approach reported in many works is to

use continuous functions to approximate discontinuous
systems [Danca and Codreanu, 2001], applying well
known analytical results of ordinary differential equa-
tions. For example, [Feckan, Awrejcewicz and Olejnik,
2005] use continuous approximations to calculate peri-
odic orbits. However, discontinuous systems can have
dynamical behavior not possible to reproduce by con-
tinuous systems, and the accuracy of the approximation
is very often evaluated numerically.
In this paper we use a continuous approximation to an-

alyze the existence of complex, chaotic-type orbits, in
a class of second-order, piecewise-linear systems. We
approximate the discontinuous term, given by a signum
function, by a saturation function. From a comparison
of the explicit solutions of both systems, it can be ob-
served a good convergence of the approximated solu-
tion to the response of the discontinuous system. More-
over, by applying a result given in [Kukučka, 2007], it
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is possible to calculate the so-called nonsmooth Mel-
nikov function, from which it is possible to predict a
chaotic behavior of the approximate system. Because
this system can be arbitrarily approximated to the dis-
continuous system, the ability to produce complex or-
bits of this last system can be concluded.
The paper is organized as follows. In section 2 we

present the discontinuous system and its approxima-
tion. In Section 3 we analyze the conditions the ap-
proximate system must satisfy to have a strange invari-
ant set. Explicit solutions of both systems are given
in Section 4, and a numerical comparison of the corre-
sponding dynamical behavior is shown in Section 5. Fi-
nally, in Section 6 some final comments are presented.

2 Discontinuous system
We consider a class of discontinuous, second-order

systems described by

ẋ1 = x2,

(1)
ẋ2 = −x1 − 2ξx2 + αsign (x1) + u (t) ,

where 0 < ξ < 1, α > 0, u (t) = r sin (ωt), and the
discontinuous term is defined as

sign (v) :=

−1, if v < 0;
0, if v = 0;
1, if v > 0.

(2)

If x = (x1, x2)
T , a compact notation is given by

ẋ =

{
Ax− b+ q (t) , if x1 ∈ S−;
Ax+ b+ q (t) , if x1 ∈ S+;

(3)

where

A =

(
0 1
−1 −2ξ

)
, b =

(
0
α

)
, q (t) =

(
0

r sin (ωt)

)
,

S−(+) =
{
x ∈ R2|x1 < (>)0

}
. The border surface is

the x2-axis, denoted by Σ =
{
x ∈ R2|x1 = 0

}
.

We approximate the discontinuous term (2) by a sat-
uration function that, for n a positive, integer number
(which will be, in general, a large number), is defined
as

satn (v) :=

−1, if nv < −1;
nv, if |nv| ≤ 1;
+1, if nv > 1.

(4)

The approximate system is then given by

ẋ =

Ax− b+ q, if x1 ∈ R−;
Anx+ q, if x1 ∈ Rn;
Ax+ b+ q, if x1 ∈ R+;

(5)

where

An =

(
0 1

αn− 1 −2ξ

)

and

R− =
{
x ∈ R2 | nx1 ≤ −1

}
;

Rn =
{
x ∈ R2 | |nx1| ≤ 1

}
;

R+ =
{
x ∈ R2 | nx1 ≥ 1

}
.

3 Chaotic dynamics of the approximate system
The Melnikov method is a well known technique

to analyze the generation of homoclinic tangles of
second-order dynamical systems perturbed by a peri-
odic, small driving input. The nominal scenario as-
sumes the existence of a saddle point giving place to
a homoclinic orbit, and the existence of periodic or-
bits inside the region encircled by the homoclinic tra-
jectory. This orbit persists under small enough pertur-
bations, and after that it can be broken, giving place to a
homoclinic bifurcation, producing eventually a strange
invariant set. The Melnikov method can be used to pre-
dict this last scenario.
This method works well for differentiable systems.

However, the nominal scenario may not be produced
by nonsmooth systems, particularly the homoclinic or-
bit with an infinite evolution time. Furthermore, clas-
sical results require smoothness of the vector field, and
the application of this method to systems like (1) or
(5) is not adequate. Nevertheless, some recent results
given in [Kukučka, 2007] can be applied to the approxi-
mate (nonsmooth) system described before(system (5))
, and the possible generation of chaotic orbits can be
predicted for this kind of systems.
Let us assume that parameters ξ and r can be given by
ξ = ϵγ and r = ϵR. Then system (5) can be described
by a perturbed system given by

ẋ1 = x2,

(6)
ẋ2 = −x1 + αsatn (x1) + ϵ

[
−γx2 +R sin (ωt)

]
.

When ϵ = 0, system (6) can be described as a Hamil-
tonian system with a Hamiltonian function given by

H(x1, x2) =
x2
2

2
+ V (x1), (7)

where

V (x1) =


x2
1

2 + α
(
x1 +

1
2n

)
, if x1 < − 1

n ;

−a
x2
1

2 , if |x1| ≤ 1
n ;

x2
1

2 − α
(
x1 − 1

2n

)
, if x1 > 1

n ;
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with a = αn− 1.

This system has three equilibrium points, two centers
at (±α, 0) and a saddle point placed at the origin, with
two homoclinic orbits described by

(
u1
0

u2
0

)
=



1
n

(
e
√
a(t+t1)

√
ae

√
a(t+t1)

)
, if t ≤ −t1;(

α+
√

aα
n cos t

−
√

aα
n sin t

)
, if |t| ≤ t1;

1
n

(
e−

√
a(t−t1)

−
√
ae−

√
a(t−t1)

)
, if t ≥ t1;

(8)

where t1 = arccos
(
−
√

a
αn

)
.

3.1 Melnikov function
The Melnikov function can be calculated with the help

of the results given in [Kukučka, 2007], summarized in
the Appendix. Given the symmetry of the vector field,
we can analyze the right homoclinic orbit in the interval
[0,∞); the other case is similar.

Let us describe system (5) in the following form (see
the Appendix),

x′ =

{
f− (x) + ϵg− (t, x) , if x ∈ S−;
f+ (x) + ϵg+ (t, x) , if x ∈ S+;

(9)

where f− = (x2, ax1)
T , f+ = (x2,−x1 + α)

T , g− =

g+ =
(
0,−γx2 +R sin (ωt)

)T . The border surface

is given by
∑

=

{
x ∈ R2

∣∣∣x1 = 1/n, x2 ∈ [0,∞)

}
,

which divides the sections S− ={
x ∈ R2

∣∣∣ 0 ≤ x1 < 1/n, x2 ∈ [0,∞)

}
and

S+ =

{
x ∈ R2

∣∣∣x1 > 1/n, x2 ∈ [0,∞)

}
.

The origin is a saddle point of ẋ = f (x), and the
homoclinic orbit crosses

∑
at the times τ1 = −t1 and

τ2 = t1 in the points u0 (τ1) =
(
1/n,

√
a/n

)T and

u0 (τ2) =
(
1/n,−

√
a/n

)T . We have that the system
is Hamiltonian, then tr(Df−) = tr(Df+) = 0, and the
perturbation is periodic. Moreover, because the vector
field is continuous, a direct application of Theorem 2
of the Appendix needs only the calculation of the next
integral, equivalent to the smooth case,

M (θ) =

∫ ∞

−∞
f
(
u0 (t)

)
∧ g
(
t+ θ, u0 (t)

)
dt. (10)

A straightforward calculation of this integral leads to

M (θ) = −αγ
√
a

n

(
1 +

√
at1
)
+

+

2αR
√
a sin

(
ωt1 + arctan

(
ω√
a

))
(ω2 − 1)

√
ω2 + a

cos (ωθ)

Note that, if M (θ) = 0, then it has simple zeroes if,
and only if,

∣∣∣∣∣ r

(ω2 − 1)
√
ω2 + a

∣∣∣∣∣ >
∣∣∣∣ ξn (1 +√

at1
)∣∣∣∣ . (11)

4 System solutions
In this section we obtain the solutions of the discon-

tinuous and the approximate systems, and show how
this last solution can be arbitrarily close to that of the
discontinuous system.

4.1 Discontinuous system
Because system (1) is piecewise linear, a solution φ

can be obtained from the general solution of nonau-
tonomous, linear systems, yielding, for x ∈ S−,

φ−(x0, t) =

(
ϕ1 − α+ a cos(ωt) + b sin(ωt)
ϕ2 + bω cos(ωt)− aω sin(ωt)

)
, (12)

where

ϕ1 = e−ξ∆t
(
B1 cos (κ∆t) +B2 sin (κ∆t)

)
,

ϕ2 = e−ξ∆t
(
B3 cos (κ∆t) +B4 sin (κ∆t)

)
,

∆t = t− t0, κ =
√
1− ξ2, a = −2rξω/d,

b = r(1− ω2)/d, d = (1− ω2)2 + (2ωξ)
2,

B1 = α+ x10 − a cos (ωt0)− b sin (ωt0)

κB2 = x20 + ξ(x10 + α)− (aξ + b ω) cos(ωt0)

+(aω − bξ) sin(ωt0),

B3 = x20 − bω cos(ω t0) + aω sin(ωt0),

κB4 = −x20 − x10 − α+ (a+ bωξ) cos(ωt0)

+(b− aωξ) sin(ωt0).

For x ∈ S+ we have

φ+(x0, t) =

(
ϕ3 + α+ a cos(ωt) + b sin(ωt)
ϕ4 + bω cos(ωt)− aω sin(ωt)

)
, (13)

where

ϕ3 = e−ξ∆tC1 cos (κ∆t) + C2 sin (κ∆t)

ϕ4 = e−ξ∆tB3 cos (κ∆t) + C4 sin (κ∆t)
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C1 = −

(
α− x10 + a cos (ωt0) + b sin (ωt0)

)
κC2 = x20 + ξ (x10 − α)− (aξ + bω) cos (ωt0)

+ (aω − bξ) sin (ωt0) ,

κC4 = −x20 − x10 + α+ (a+ bωξ) cos (ωt0)

+ (b− aωξ) sin (ωt0) .

Because the interaction of the orbits with the discon-
tinuity surface is transversal, a complete solution can
be obtained by concatenating (12)-(13). For example,
if x0 ∈ S+ and tΣ denotes the switching time, then we
have, for an interval (t0, t0 + σ), σ > 0, where there is
only one commutation, that the solution is given by

φ(x0, t) =

{
φ+(x0, t), for t0 ≤ t < tΣ;
φ−(ξ0, t), for tΣ ≤ t < tΣ + σ;

(14)

where ξ0 = φ+ (x0, tΣ).

4.2 Approximate solution
Similarly, the solution φn of (5) can be obtained by

concatenation of the orbits in the regions R−, Rn, and
R+, denoted φ−

n , φn
n, and φ+

n , respectively.
For x ∈ R− it is straightforward to obtain φ−

n = φ−.
Similarly, for x ∈ R+ we have φ+

n = φ+. Finally, for
x ∈ Rn, we can obtain the expression

φn
n(x0, t) =

(
ϕ5 + a1 cos(ωt) + b1 sin(ωt)

ϕ6 + b1ω cos(ωt)− a1ω sin(ωt)

)
, (15)

where

ϕ5 = e−ξ∆t
(
D1 cosh (κ1∆t) +D2 sinh (κ1∆t)

)
ϕ6 = e−ξ∆t

(
D3 cosh (κ1∆t) +D4 sinh (κ1∆t)

)
κ1 =

√
ξ2 + αn− 1, a1 = −2rξω/f,

b1 =
r
(
1− αn− ω2

)
f

, f =
(
1− αn− ω2

)2
+(2ωξ)

2
,

D1 = x10 − a1 cos (ωt0)− b1 sin (ωt0) ,

κ1D2 = x20 + ξx10 − (a1ξ + b1ω) cos (ωt0)

+ (a1ω − b1ξ) sin (ωt0) ,

D3 = x20 − b1ω cos (ωt0) + a1ω sin (ωt0) ,

κ1D4 = −x20ξ + (αn− 1)x10 + ω (aω − bξ) cos (ωt0)

+
(
(1− αn) b− aω ξ

)
sin (ω t0) .

Similar to the discontinuous system (1), a complete
solution can be obtained by concatenating φ−

n = φ−

(12), φ+
n = φ+ (13), and φn

n (15). For example, if
x0 ∈ R+, and the orbit enters region Rn at time tn1 ,
then to region R− at time tn2 and stay there, then we
have, for an interval (t0, t0 + tn1 + tn2 + σ), σ > 0,
that the solution is given by

φn (x0, t) =

φ+
n (x0, t) , t0 ≤ t ≤ tn1 ;

φn
n (y0, t) , tn1 ≤ t ≤ tn2 ;

φ−
n (z0, t) , tn2 ≤ t ≤ tn2 + σ;

(16)

where y0 = φ+
n (x0, tn1

), z0 = φn
n (y0, tn2

).

5 Numerical results
In this section we show some numerical results ob-

tained from the explicit solutions presented in Sec-
tion 4. These results were calculated with MatLab c⃝.
Parameter values are ξ = 0.08, α = 1, r = 1.1,
ω = π/10. The simulation interval was from 0 to 140
sec, and the integration step h = 0.001 sec. Initial
conditions were set to x0 = (0.1, 0.1)

T . We obtained
the difference between the position and velocity of the
two system responses, the discontinuous and the ap-
proximate, for different values of the saturation slope
n ∈ {2, 25, 500}. These results are shown in figures
1 and 2 for the position and the velocity, respectively.

Note that, for n > 500, the difference between both
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Figure 1. Position difference between the discontinuous and the
continuous system, for n = 2, 25, 500.
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Figure 2. Velocity difference between the discontinuous and the
continuous system, for n = 2, 25, 500.

systems is negligible. This difference can be arbitrarily
small if n is big enough. Moreover, condition (11) is
satisfied for big values of n. This means that the dy-
namical behavior displayed by the approximate system
can be arbitrarily close to the discontinuous system.
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Figures 3-5 show some responses of the discontinuous
system, for different parameter values satisfying con-
tidition (11).
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Figure 3. Response of the discontinuous system. ci =
[0.001 , 0.01], ξ = 0.08, α = 1, r = 1.1, ω = 0.1π.
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Figure 4. Response of the discontinuous system. ci =
[0.001 , 0.01], ξ = 0.01, α = 1, r = 1.1, ω = 0.1π.

6 Conclusions
The application of a recent result about the persistence

of homoclinic orbits in a class of nonsmooth systems,
and the possibility that a homoclinic bifurcation may
occur, has permitted to analyze the complex dynam-
ics exhibited by a piecewise linear system that can be
seen as an approximation of a discontinuous system.
From a comparison of the explicit solutions of both sys-
tems, it can be observed a good convergence of the ap-
proximated solution. From this fact, the ability of this
kind of systems to produce chaotic-like orbits can be
concluded. However, to prove that the discontinuous
system had the usual properties defining a system as
chaotic deserves a more profound analysis.

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

 x
1

 

 
sign(x

1
)

Figure 5. ci = [0.001 , 0.01], ξ = 0.01, α = 1, r = 2,
ω = 0.1π.
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Appendix A Melnikov method for discontinuous
systems
Let us consider the system

ẋ = f (x) + ϵg (t, x) , t ∈ R, x ∈ R2 (17)

where f (g) : G → Rn, G := J × G′ ⊂ R × Rn, and
f and g satisfy the following assumptions,

(i) f and g have the form

f (t, x)
(
g (t, x)

)
=

{
f− (g−) if x ∈ S−
f+ (g+) si x ∈ S+

(18)

where G′ is partitioned in two disjoint, open sub-
sets S−, S+ by a surface Σ, such that G′ =
S− ∪Σ∪S+. The surface Σ is defined by a scalar
function H : G′ → R, H ∈ Cr, r ≥ 1. The sub-
sets S− y S+, and the surface Σ can be defined
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by

S− =
{
x ∈ G′|H (x) < 0

}
S+ =

{
x ∈ G′|H (x) > 0

}∑
=
{
x ∈ G′|H (x) = 0

} (19)

(ii) The normal to the surface Σ is given by

n (x) =
[
DH (x)

]T
, x ∈ Σ (20)

and it is chosen in such a way that n (x) ̸= 0 for
each x ∈ Σ.

(iii) There exist functions h− (k−) : J × D− → Rn

and h+ (k−) : J×D+ → Rn with the properties

(a) S− ∪ Σ ⊂ D−, S+ ∪ Σ ⊂ D+, where D−
and D+ are domains in Rn.

(b) h− (k−) ∈ Cr, h+ (k+) ∈ Cr

(c)

h− (k−) = f− (g−) ,∀t ∈ J,∀x ∈ S−

h+ (k+) = f+ (g+) , ∀t ∈ J,∀x ∈ S+

(21)

Moreover, the following conditions hold,

1. The system ẋ = f− has an saddle point x0 ∈ S−.
2.

tr (Df−) = tr (Df+) = 0 (22)

in their respective domains.
3. g is a T -periodic function, that is, there exists T >

0 such that

g (t+ T, x) = g (t, x) (23)

4. Let u0 (t) be the homoclinic trajectory of the equi-
librium x0, which has at least one transversal in-
tersection with Σ.

Theorem: 1. The function d (ϵ, θ)1, ϵ ∈ (−ϵ4, ϵ4), θ ∈
R, can be expressed as

d (ϵ, θ) =
ϵ∥∥f+ (u0 (t)

)∥∥M (θ) +O
(
ϵ2
)
, (24)

where

M (θ) =

∫ ∞

−∞
f
(
u0 (t)

)
∧ g
(
t+ θ, u0 (t)

)
dt

+

2i0−1∑
j=1

[
∆u
(
j + 1, τj , θ

)
−∆u

(
j, τj , θ

)]

+
2k∑

j=2i0

[
∆s
(
j + 1, τj , θ

)
−∆s

(
j, τj , θ

)]
(25)

Finally, we have the next theorem.

Theorem: 2. Let ϵ0 be small enough, and all the con-
ditions (18)-(23) satisfied.

(i) If there exists a number θ0 ∈ R such that

M (θ0) = 0, DM (θ0) ̸= 0, (26)

then there exists a mapping Cr−1 θ : (−ϵ0, ϵ0) →
R such that

θ (0) = θ0 y d
(
ϵ, θ (ϵ)

)
= 0, ∀ϵ ∈ (−ϵ0, ϵ0) . (27)

(ii) System (17) has a homoclinic solution x (ϵ, t), cor-
responding to the T -periodic solution φϵ,0 (0, ξϵ),
for each ϵ ∈ (−ϵ0, ϵ0).

1where d is a length of the projection of the vector uu
ϵ,θ (0) −

us
ϵ,θ (0) to line L.


