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Abstract

A continuous approximation of a second-order,
piecewise-linear system, modeled as a discontinu-
ous system, is presented. The discontinuous sys-
tem includes a signum function, approximated by a
saturation-type function, whose complex dynamics is
analyzed based on some recent results. A numerical
comparison between the analytical solutions of both
systems shows the accuracy of the approximation.
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1 Introduction

Piecewise-smooth (PWS) systems have attired the
attention of many researchers in the last years ([di
Bernardo et al, 2008], [Filippov, 1988]). They de-
scribe with good accuracy important phenomena and
practical systems, like friction, impacts, commutation,
sliding motion, mechanical, electronic, and even bio-
logical systems ([Brogliato, 1999],[di Bernardo et al,
2008]). In consequence, they appear frequently in sev-
eral mathematical fields, in control theory and engi-
neering, and so on. They can exhibit particular be-
haviors like equilibria intervals, sliding motion, non-
typical bifurcations (border collision, grazing, sky blue,
sliding, etc.), and chaotic dynamics.

An important class of PWS systems can be described
by

1':F1($)7 1fx€S“ 7,:]_77m

where S;, 7 = 1,2, --- ,m are open, disjoint sets in R"
such that U™, S; = R", where S; is the closure of S;.
The border between the adjacent sets .S; and .S; can be
given by a function H;;, that is,

Bij =8NS = {x: Hyj (x) =0},
i£j=1,--,m.

In general, F; and H;; are smooth; in this paper we will
suppose also that they are linear.

These systems have been analyzed with several tools,
like the convex method of Filippov [Filippov, 1988].
Some conditions to have diverse kinds of typical bi-
furcations of discontinuous systems are given in [di
Bernardo et al, 2008].

A different approach reported in many works is to
use continuous functions to approximate discontinuous
systems [Danca and Codreanu, 2001], applying well
known analytical results of ordinary differential equa-
tions. For example, [Feckan, Awrejcewicz and Olejnik,
2005] use continuous approximations to calculate peri-
odic orbits. However, discontinuous systems can have
dynamical behavior not possible to reproduce by con-
tinuous systems, and the accuracy of the approximation
is very often evaluated numerically.

In this paper we use a continuous approximation to an-
alyze the existence of complex, chaotic-type orbits, in
a class of second-order, piecewise-linear systems. We
approximate the discontinuous term, given by a signum
function, by a saturation function. From a comparison
of the explicit solutions of both systems, it can be ob-
served a good convergence of the approximated solu-
tion to the response of the discontinuous system. More-
over, by applying a result given in [Kukucka, 2007], it
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is possible to calculate the so-called nonsmooth Mel-
nikov function, from which it is possible to predict a
chaotic behavior of the approximate system. Because
this system can be arbitrarily approximated to the dis-
continuous system, the ability to produce complex or-
bits of this last system can be concluded.

The paper is organized as follows. In section 2 we
present the discontinuous system and its approxima-
tion. In Section 3 we analyze the conditions the ap-
proximate system must satisfy to have a strange invari-
ant set. Explicit solutions of both systems are given
in Section 4, and a numerical comparison of the corre-
sponding dynamical behavior is shown in Section 5. Fi-
nally, in Section 6 some final comments are presented.

2 Discontinuous system
We consider a class of discontinuous, second-order
systems described by

T1 = Ta,
)]
Ty = —w1 — 28w + asign (v1) +u (),

where 0 < £ < 1, @ > 0, u(t) = rsin(wt), and the
discontinuous term is defined as

—1,if v < 0;
sign (v) :=<¢ 0, ifv=0; 2)
1, ifv>0.

If 2 = (21, 72)7, a compact notation is given by

3)

b Az —b+q(t),ifx; € S_;
T 1Az +b+q(t),ifz €5

where

A= (_01 _12§> 0= @ a8 = (rsin()(wt)) ’

S~ = {2 € R?|z; < (>)0}. The border surface is
the xo-axis, denoted by X = {x € Rz, = 0}.

We approximate the discontinuous term (2) by a sat-
uration function that, for n a positive, integer number
(which will be, in general, a large number), is defined
as

—1,if nv < —1;
nv, if [nv| < 1; 4)
+1,if nv > 1.

sat, (v) ==

The approximate system is then given by

Ar —b+gq,if x1 € R~
=14 Ayx+gq, ifz;€RY (5)
Az +b+gq,if 7, € RT;
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where

and

R~ = x€R2|nx1§—1};
R" = {z € R? | |nz1| < 1};
Rt ={z e R?| nay >1}.

3 Chaotic dynamics of the approximate system

The Melnikov method is a well known technique
to analyze the generation of homoclinic tangles of
second-order dynamical systems perturbed by a peri-
odic, small driving input. The nominal scenario as-
sumes the existence of a saddle point giving place to
a homoclinic orbit, and the existence of periodic or-
bits inside the region encircled by the homoclinic tra-
jectory. This orbit persists under small enough pertur-
bations, and after that it can be broken, giving place to a
homoclinic bifurcation, producing eventually a strange
invariant set. The Melnikov method can be used to pre-
dict this last scenario.

This method works well for differentiable systems.
However, the nominal scenario may not be produced
by nonsmooth systems, particularly the homoclinic or-
bit with an infinite evolution time. Furthermore, clas-
sical results require smoothness of the vector field, and
the application of this method to systems like (1) or
(5) is not adequate. Nevertheless, some recent results
given in [Kukucka, 2007] can be applied to the approxi-
mate (nonsmooth) system described before(system (5))
, and the possible generation of chaotic orbits can be
predicted for this kind of systems.

Let us assume that parameters £ and r can be given by
¢ = ey and r = eR. Then system (5) can be described
by a perturbed system given by

jjl = T2,
(6)
iy = —x1 + asat, (z1) + € [—yx2 + Rsin (wt)] .

When e = 0, system (6) can be described as a Hamil-
tonian system with a Hamiltonian function given by

w3

H(xy,x2) = 5T V(xy), @)
where
z2 1
S ta(e+55),if 21 <-4
— x 1
V(z1) = p —a4, if || <1ﬁ,
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witha = an — 1.

This system has three equilibrium points, two centers
at (+a, 0) and a saddle point placed at the origin, with
two homoclinic orbits described by

1 evalt+t) .
w\ Jaevatt) | ift < —ty;
1 ax
Ug a+/5rcost .
() =1 (i ) Hi=ne ®

=

efﬁ(tftl) 3
n _ﬁe,ﬁ(t,tl) ) lft Z tl;

where t; = arccos (— i)
an

3.1 Melnikov function

The Melnikov function can be calculated with the help
of the results given in [Kukucka, 2007], summarized in
the Appendix. Given the symmetry of the vector field,
we can analyze the right homoclinic orbit in the interval
[0, 0); the other case is similar.

Let us describe system (5) in the following form (see
the Appendix),

o = {f— (z) +eg_ (t,x), if x€S;

f+(x) +egs (tx), if z€ST ®

where f_ = (z9,a21)", f1 = (22, —21 + )", g_ =
g+ = (0,—yx2 + Rsin (wt))T. The border surface

is given by > = {x c R? ’xl =1/n,x9 € [O,oo)},
which divides the sections S~ =

x€R2’0<m1<1/n,x2€[O,oo)} and

St = {x € R2‘x1 > 1/n,xq € [O,oo)}.

The origin is a saddle point of & = f (z), and the
homoclinic orbit crosses ) at the times 73 = —t; and
T3 = t1 in the points ug (1) = (1/n, ﬁ/n)T and
ug (12) = (1/n, —\/ZL/n)T. We have that the system
is Hamiltonian, then tr(Df_) = tr(D f}) = 0, and the
perturbation is periodic. Moreover, because the vector
field is continuous, a direct application of Theorem 2
of the Appendix needs only the calculation of the next
integral, equivalent to the smooth case,

M(G):/OO £ (w0 (1)) A g (¢ 4 0,u0 (1)) dt. (10)

— 00

13

A straightforward calculation of this integral leads to

M(e)z—%‘/&(u\/&tlﬂ

2acR+/a sin (wtl + arctan (\‘/’JE)>
(w?=1)vVw?+a

+ cos (wh)

Note that, if M (6) = 0, then it has simple zeroes if,
and only if,

r

@ 1)V ta

.an

>‘i(1+\/5t1)

4 System solutions

In this section we obtain the solutions of the discon-
tinuous and the approximate systems, and show how
this last solution can be arbitrarily close to that of the
discontinuous system.

4.1 Discontinuous system

Because system (1) is piecewise linear, a solution ¢
can be obtained from the general solution of nonau-
tonomous, linear systems, yielding, for x € 57,

o (w0, ) = (qﬁl — a+ acos(wt) +bsin(wt)> (12

@2 + bw cos(wt) — aw sin(wt)

where

¢ = eS8t (B cos (kAt) + By sin (kAL))
¢o = e 2" (Bs cos (kAt) + Bysin (kAt))

At =t —tg, k =+/1—£&2, a=—2réw/d,
b=r(l-w?)/d, d=(1—w?)?+ (2wE)>,

By = a+x1, — acos (wtg) — bsin (wty)
KBg = o, + &(21, + ) — (a€ 4+ bw) cos(wty)
+(aw — b) sin(wty),

Bs = 29, — bw cos(wty) + aw sin(wtp),
KBy = —x9, — 21, — @ + (a + bw&) cos(wtp)
+(b — awé) sin(wtp).

For x € ST we have

N v —
@ (xo,t) = <¢4 + bw cos(wt) — aw sin(wt) > , (13)

where

Pz = e A cos (KAL) + Cysin (KAL)
¢a = e 2By cos (kAt) + Cy sin (KAL)
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C1 = — (o — m1, + acos (wtg) + bsin (wip))
kCy = xa, + & (21, — @) — (a€ + bw) cos (wip)
+ (aw — b€) sin (wtp) ,
KkCy = —a, — 21, + o + (a + bwf) cos (wtp)
+ (b — awé) sin (wtp) .

Because the interaction of the orbits with the discon-
tinuity surface is transversal, a complete solution can
be obtained by concatenating (12)-(13). For example,
if 2o € ST and tx, denotes the switching time, then we
have, for an interval (¢o, to + o), o > 0, where there is
only one commutation, that the solution is given by

+ .
] (Io,t),fOI‘ to St<t2,
plwo,t) = {cp(fo,t), for ty <t<tyto; O

where §o = ¢ (29, tx).

4.2 Approximate solution

Similarly, the solution ¢,, of (5) can be obtained by
concatenation of the orbits in the regions R~, R", and
R, denoted ;;, ©?, and ;, respectively.

For x € R~ itis straightforward to obtain ¢, = ¢~.
Similarly, for z € R™ we have ;! = ¢™. Finally, for
x € R™, we can obtain the expression

n [ ¢5 + a1 cos(wt) + b sin(wt)
#n(wo,t) = <¢6 + biw cos(wt) — ar1w sin(wt)) » (13

where

¢5 = e 2" (Dy cosh (k1 At) + Do sinh (k1At))
pg = e A (D3 cosh (k1 At) + Dy sinh (k1 At))

| = VET L @ = 26w

r(l—-an—-—w ) ) 3
—_—, = <l—om—w )
f

Dy = z1, — aj cos (wtp) — by sin (witp) ,

k1Da = ma, + &x1, — (a1€ + biw) cos (wip)
+ (a1w — b1€) sin (witp) ,

D3 = 29, — bjw cos (wtp) + aywsin (wtp) ,
k1Dy = —x9,& + (an — 1) z1, + w (aw — bE) cos (witp)
+((1—an)b—awé) sin (wtp) .

by =

Similar to the discontinuous system (1), a complete
solution can be obtained by concatenating ¢, = ¢~
(12), o7 = T (13), and 7 (15). For example, if
xo € RT, and the orbit enters region R" at time t,,,
then to region R~ at time ¢,,, and stay there, then we
have, for an interval (to,to + tn, + tn, +0), 0 > 0,
that the solution is given by

O (w0, t), to <t <ty
©n (20,t) = S ©n (Yo, t), tn, <t <ty
90; (ZO>t)a tng S t S tnz +0;

(16)

where yo = @77 (20, tn,), 20 = ¢ (Yo, tns)-

+(2we)?,
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5 Numerical results

In this section we show some numerical results ob-
tained from the explicit solutions presented in Sec-
tion 4. These results were calculated with MatLab®.
Parameter values are £ = 0.08, a = 1, r = 1.1,
w = m/10. The simulation interval was from 0 to 140
sec, and the integration step h = 0.001 sec. Initial
conditions were set to o = (0.1, 0.1)T. We obtained
the difference between the position and velocity of the
two system responses, the discontinuous and the ap-
proximate, for different values of the saturation slope
n € {2,25,500}. These results are shown in figures
1 and 2 for the position and the velocity, respectively.

Note that, for n > 500, the difference between both

>

e

By ebaiege

=z
g

Figure 1. Position difference between the discontinuous and the

continuous system, for n = 2,25, 500.

i
o 20 a0 60 80 100 120 140

Figure 2. Velocity difference between the discontinuous and the
continuous system, for n = 2, 25, 500.

systems is negligible. This difference can be arbitrarily
small if n is big enough. Moreover, condition (11) is
satisfied for big values of n. This means that the dy-
namical behavior displayed by the approximate system
can be arbitrarily close to the discontinuous system.
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Figures 3-5 show some responses of the discontinuous
system, for different parameter values satisfying con-
tidition (11).

Figure 3. Response of the discontinuous system. ¢; =

[0.001, 0.01].£ = 0.08,a = 1.7 = 1.1,.w = 0.1 .

Figure 4. Response of the discontinuous system. ¢; =

[0.001, 0.01.§ =0.0l.a=1.r=11w=0.1r.

6 Conclusions

The application of a recent result about the persistence
of homoclinic orbits in a class of nonsmooth systems,
and the possibility that a homoclinic bifurcation may
occur, has permitted to analyze the complex dynam-
ics exhibited by a piecewise linear system that can be
seen as an approximation of a discontinuous system.
From a comparison of the explicit solutions of both sys-
tems, it can be observed a good convergence of the ap-
proximated solution. From this fact, the ability of this
kind of systems to produce chaotic-like orbits can be
concluded. However, to prove that the discontinuous
system had the usual properties defining a system as
chaotic deserves a more profound analysis.

15

Figure 5. ¢; = [0.001, 0.01],§ = 0.0, = 1,7 = 2,
w=0.1m.
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Appendix A Melnikov method for discontinuous
systems
Let us consider the system

i=f(x)+eg(t,x), tcR, zcR? (17)

where f (g) : G - R",G:=J x G C R x R", and
f and g satisfy the following assumptions,

(i) f and g have the form

fo(g-)if x e S_

. 1
[+ (94)si z €54 (18

f () (g (t.2)) = {

where G’ is partitioned in two disjoint, open sub-
sets S_, S, by a surface X, such that G' =
S_UXUS,. The surface X is defined by a scalar
function H : G’ — R, H € C",r > 1. The sub-
sets S_ y S, and the surface ¥ can be defined
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by

S_={zedH (z) <0}
Sy ={z € G'|H (z) >0} (19)

Z ={z € G'|H (z) =0}
(i) The normal to the surface ¥ is given by
n(x)=[DH(@)]", zex  (0)

and it is chosen in such a way that n (z) # 0 for
eachx € X.
(iii) There exist functions h_ (k_) : J x D_ — R"

and hy (k_) : Jx Dy — R™ with the properties

(@ S_uXxcD_,S5.U%X C Dy, where D_

and D, are domains in R”.
(b) ho (k=) e C", hy (ky) € C7
(©)
h_(k-)=f-(g9-),Vte JVz e S_

(21)
hy (ki) = f+ (94),Vt € J,Vz € Sy
Moreover, the following conditions hold,

1. The system & = f_ has an saddle point zy € S_.
2.

tr(Df-)=tr(Dfs) =0 (22

in their respective domains.
3. gis aT-periodic function, that is, there exists 7' >
0 such that

g(t+T,2) = g(t,2) 23)

4. Let ug (t) be the homoclinic trajectory of the equi-
librium xg, which has at least one transversal in-
tersection with 3.
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Theorem: 1. The function d (€,0)", € € (—€4,€4), 0 €
R, can be expressed as

d(e,0) = ‘

—mM(Q)—i—O(e ) 24)

M (0) :/Oo fuo(®)) Ag(t+6,uo(t))dt

2ip—1

+ 3 [A G170 - A (3,75.0)] (s
=1
J2k

+ 30 (AT G+ 17 0) - A% (o, 6)]
Jj=2i0

Finally, we have the next theorem.

Theorem: 2. Let ¢g be small enough, and all the con-
ditions (18)-(23) satisfied.

(i) If there exists a number 0y € R such that
then there exists a mapping C™~1 0 : (—eq, €g) —
R such that
6(0) =60y d(eb(c) =0, Ve € (—€o,€0). (27)

(ii) System (17) has a homoclinic solution x (¢, t), cor-
responding to the T-periodic solution v, ¢ (0,&.),
foreach e € (—eg, €p).

Lwhere d is a length of the projection of the vector ug 0 (0) —
u? 4 (0) to line L.



