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Abstract
A state estimation problem is an important part of the

more general control problem under incomplete infor-
mation. In many cases control strategies are built on the
base of various algorithms of state estimation. In this
work, estimation problems for linear systems are con-
sidered under mixed disturbances. The determined dis-
turbances are constrained by convex and compact sets,
and the random ones are standard Wiener processes.
Random information sets (multiestimates) are defined.
In the absence of random components the multiesti-
mates coincide with information sets from the theory of
guaranteed estimation. The structure of multiestimates
is considered: they are the sum of a random vector and
a determinate set, which depend on parameters. In turn,
the given set of parameters unequivocally defines the
conditional and unconditional probability of inclusion
of the multiestimate in a covering set. Special cases are
considered, and the question on the form of the cover-
ing set is discussed. A modified problem is considered
under communication constraints, in which the limited
capacity of the digital data link and random errors in
a communication channel are taken into consideration.
Relations between the accuracy of restoration of multi-
estimate’s parameters, the length of a transferred word,
and a transmission frequency are received in the noise-
less case. A number of results is illustrated on an ex-
ample.
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1 Introduction
There are many control problems under incomplete

information in which state estimation algorithms are
used. A motion correction problem is one of them
[Kurzhanski, 1977]. To solve this problem it is nec-
essary at some instant to find a set of state vectors com-
patible with measurements. After that on the rest of

time interval, a control is chosen to minimize a termi-
nal cost uniformly for all the initial conditions from
the found set. Hence, algorithms for set estimates
are necessary and useful for control. For linear mul-
tistage systems with the mixed uncertainty including
both determined and random disturbances, in [Katz and
Kurzhanski, 1975] estimates in the form of sets were
offered. However these estimates were not reduced
to information sets from [Kurzhanski, 1977; Kurzhan-
ski and Vályi, 1996] in the absence of random distur-
bances. In this connection, in [Anan’ev, 2000] the con-
cept of random information set for systems with dis-
crete time and with the mixed uncertainty is entered.
The entered sets are already reduced to earlier known
in the absence of random disturbances, but generally
demand the further processing, as they depend on ran-
dom and not observable parameters. In work [Anan’ev,
2007], a generalization of the random information sets
named for brevity multiestimates is offered for multi-
stage stochastic inclusions. An inclusion of the mul-
tiestimates in a covering set taking into account the
communication constraints is considered in [Anan’ev,
2008]. The received results in many respects lean on
[Savkin and Petersen, 2003; Huber, 1981; Matheron,
1975]. Various aspects of estimation theory with un-
certain disturbances are examined in [Schweppe, 1973;
Chernousko, 1994]. In this work, linear continuous
time systems are considered mostly in a case when the
determined disturbances are subordinated to geometri-
cal restrictions and the random disturbances are Wiener
processes. At the same time, it makes sense to give in
the beginning the general statement of a problem and
to plan the scheme of its decision. A realization of this
scheme for rather simple case is offered below.
Let (Ω,F) be a standard measurable space, and P be

a probability onF . Consider two functions x(d, ω) and
y(d, ω) mappingD×Ω in U and S respectively, where
D, U , S are separable metrizable spaces. The func-
tion x(d, ω) not observable in experiment is supposed
continuous in d and measurable in ω. The observable
function y(d, ω) has analogous properties. Let’s en-
ter the random closed set of compatible parameters:



D(s, ω) = y−1
ω ({s}). We substitute it in the function

x: X (s, ω) = x(D(s, ω), ω). The received set is named
the random information set or the multiestimate of
the value x with respect to observation y = s.
Problem. For ε > 0 it is necessary to find a set
X̂ (s) ⊂ U so that p(d, s, {ω : X (s, ω) ⊂ X̂ (s)}) ≥
1 − ε for all d ∈ D, or, reducing search, only for
all d ∈ Ds = ∪ωD(s, ω). Here y(d, ω) = s, and
p(d, s, A) = E(IA | y(d, ·) = s) is a regular condi-
tional probability [Shiryayev, 1991].
In a case when functions x, y do not depend on pa-

rameter d, the Problem is reduced to construction of a
confidence set with conditional probability of inclusion
not smaller 1− ε. If functions x, y depend only on pa-
rameter d, the Problem coincides with one of construc-
tion of the information set in the theory of guaranteed
estimation [Kurzhanski, 1977; Kurzhanski and Vályi,
1996]. In Problem, not all aspects and the difficulties
meeting in specific cases are reflected far. In partic-
ular, for evolutionary systems it is rather important to
find the recurrent procedure of construction of cover-
ing sets. Besides, the Problem can be complicated due
to the presence of communication constraints. In this
case, the information to the Center of Processing In-
formation (CPI) may arrive during the discrete instants
by the words consisting of integers and having the lim-
ited length. The communication channel for simplic-
ity is often supposed noiseless and not having delay.
The coding device in a communication channel is ex-
ploited for an information transfer about parameters of
the multiestimate and of the signal. In CPI the infor-
mation is decoded and utilized for the approximated
restoration of a covering set. Other schemes are used
for channels with noise. One of them we suggest at the
end of the paper.

2 Linear-Gaussian Continuous Systems
Consider a linear system in Ito’s form:
dx = (A(t)x+ v(t))dt+ dξ(t), t ∈ [0, T ],
dy = (C(t)x+ w(t))dt+ dη(t), y0 = 0,

}
(1)

where x(t) ∈ Rn is the unmeasured vector, y(t) ∈ Rm

is the measured one. The initial state x0 has Gaus-
sian distribution x0 ∼ N(x̄0, γ0) with mean value x̄0

and the covariance γ0. Uncertain parameters in (1)
are restricted by the convex and compact constraints
x̄0 ∈ X̄0, v(t) ∈ V, w(t) ∈W . The random processes
ξ(t), η(t) in (1) are supposed to be Wiener ones with
zero means and cov(dξ, dξ) = Q(t)dt, cov(dη, dη) =
R(t)dt. The processes ξ(t), η(t) are independent and
do not depend on the initial vector x0.
Recall that for any matrix C the pseudoinverse ma-

trix C− is defined by conditions CC−C = C, C− =
C ′L = MC ′, where L, M are matrices of the suit-
able size, the symbol ′ means the transposition, [Liptser
and Shiryayev, 2000]. Let kerC = {x : Cx = 0},
imC = {y : y = Cx, ∃x}, then the following equality
{x : Cx ∈W} = C−(W ∩ imC)⊕kerC takes place.
We introduce purely random processes defined by

dx0 = A(t)x0dt+ dξ(t), x0
0 ∼ N(0, γ0),

dy0 = C(t)x0dt+ dη(t), y0
0 = 0, t ∈ [0, T ],

}
(2)

and determinate functions for which
ẋ1 = A(t)x1 + v(t), x1

0 = x̄0,
ẏ1 = C(t)x1 + w(t), y1

0 = 0, t ∈ [0, T ].

}
(3)

It is clear that x(t) = x0(t) + x1(t), y(t) = y0(t) +
y1(t). Using the function y1t(·) = {y1(s) : s ∈ [0, t]}
we construct the determinate information set, which is
denoted by X 1(t, y), [Kurzhanski, 1977]. To this end
for given ∆ > 0 and for any t ∈ [0, T ], consider the
finite sequence

y1t(·∆) = {y1(∆), . . . , y1(j∆
t ∆), y1(t)}

consisting of j∆
t + 1 elements, where j∆

t = bt/∆c.
Here b·c denotes the integer part of a real number. Let
X(t, s) be the fundamental matrix of the first equation
in (1).
Let’s put (j∆

t + 1)∆ = t by definition and introduce
the designations:
C∆

i =
∫ i∆

(i−1)∆
C(s)X(s, (i− 1)∆)ds, X∆

i =

X(i∆, (i− 1)∆), W∆
i = {

∫ i∆

(i−1)∆
w(s)ds : w(s) ∈

W} ⊂ Rn, V∆
i =

{[ ∫ i∆

(i−1)∆
X(i∆, s)v(s)ds;∫ i∆

(i−1)∆

∫ i∆

s
C(t)X(t, s)dtv(s)ds

]
: v(s) ∈ V

}
⊂

Rn+m, C̃∆
i = [C∆

i , F ], X̃∆
i = [X∆

i , D], where F =
[Om×n, Im], D = [In, On×m], In is a unity matrix,
Om×n is a zero matrix. Using this notation we can
write the multistage system
x1

i = X∆
i x

1
i−1 +Dv, v ∈ V∆

i , y
1(i∆) =

y1((i− 1)∆) + C∆
i x

1
i−1 + Fv + w, w ∈ W∆

i ,
x1

0 ∈ X̄0, y
1(0) = 0, i = 1, . . . , j∆

t + 1.


(4)

From now on, we use the recurrent sets defined by the
equations:
X̄∆

i =
(
X∆

i−1 × V∆
i

)⋂(
C̃∆−

i

(
(y1

i −W∆
i )
⋂

imC̃∆
i

)
⊕ kerC̃∆

i

)
, y1

i = y1(i∆)− y1((i− 1)∆),

X∆
i = X̃∆

i X̄∆
i , X∆

0 = X̄0, i = 1, . . . , j∆
t + 1.


(5)

Theorem 1. The following convergence takes place in
Hausdorf metric uniformly with respect to t ∈ [0, T ]:
lim∆→0 X∆

j∆
t +1

= X 1(t, y).
Theorem 1 follows from the compactness of the initial

set and the weak compactness of disturbances.
Definition. The sets
X (t, y) = X 1(t, y) + x0(t), t ∈ [0, T ], (6)

are called the random information sets or the multiesti-
mates.
The sets X 1(t, y) and (6) coincide in the absence of

random components. Owing to the law of averages and
Tchebychev’s inequality [Shiryayev, 1991] we have∑N

k=1 y(t)(k)/N → Ey(t) = y1(t) if N →∞,
where y(t)(k) are realizations of measured vectors. Un-
fortunately, repetition of experiences and ways of spec-
ification of multiestimates on the basis of given rela-
tion, as a rule, are impossible. Therefore in the present
work other methods connected with construction of
covering set Z(t), depending on the measured signal
yt(·) and providing inclusion X (t, y) ⊂ Z(t) with



given conditional probability irrespective of realization
of uncertain parameters {x̄0, v(·), w(·)}, are offered.

3 Constructing of covering set
In system (1), the sum y(t) = y0(t) + y1(t) is mea-

sured, and it is obviously impossible to find out the
summand y1(t), on which the determinate set in multi-
estimate (6) is under construction. Let’s act as follows.
Let the symbol Y1t mean the set of all signals in sys-
tem (3) on the segment [0, t]. It is convex compact set
in the space of all continuous vector functions. Fix-
ing y1t ∈ Y1t and marking out the random element
y0t = y(·) − y1t, we can find the conditional distribu-
tion Law(x0(t) | y0t, y1t) = N(m0(t), γ(t)) for the
vector x0(t) from (2). According to Kalman’s theory
[Liptser and Shiryayev, 2000; Shiryayev, 1991] the pa-
rameters m0(t), γ(t) satisfy the equations
dm0 = A(t)m0dt+K(t)(dy0 − C(t)m0dt),
m0(0) = 0; K(t) = γ(t)C ′(t)R−1(t),
γ̇ = A(t)γ + γA′(t) +Q(t)−K(t)C(t)γ,
γ(0) = γ0.

 (7)

Let k(t) be a vector satisfying the first equation in (7),
where the signal y0 is replaced by y, and α(t) be a vec-
tor satisfying to the similar equation, where the signal
y0 is replaced by −y1. We have the obvious equality
m0(t) = k(t) + α(t) that follows from the relation
y0(t) = y(t)− y1(t). We form the set
Z(t) = k(t) +

⋃
y1t∈Y1t(α(t) + X 1(t, y)) (8)

and use it as a covering one for the multiestimate
X (t, y) from (6). Now our goal is to count up the con-
ditional probability P (X (t, y) ⊂ Z(t) | y0t, y1t). In
force (6), (8) we have the equality of events
{X (t, y) ⊂ Z(t)} = {x0(t)−m0(t) ∈ D(t)}, (9)

where
D(t) =

{
x : x+ α(t) + X 1(t, y)

⊂
⋃

y1t∈Y1t

(
α(t) + X 1(t, y)

)}
.

 (10)

The set D(t) depends on the concrete realization y1t

and contains zero at any such realization. Thus, the
required conditional probability subject to (9), (10) is
equal to
P (X (t, y) ⊂ Z(t) | y0t, y1t) =

∫
D(t)

f(x, γ(t))dx,
(11)

where f(x, γ) is the density of a gaussian distribu-
tion with zero mean and the covariance γ. As the
distribution can be singular, we give an expression
of the type (11), which is true and for the singu-
lar case. Consider the matrix representation γ =
TΛ1/2(Λ1/2)′T ′, where T is the orthogonal matrix,
Λ1/2 = [diag{λ1/2

1 , . . . , λ
1/2
k };O(n−k)×k]. Here k =

rank γ, λi are eigenvalues that distinct from zero of the
matrix γ. Then equality (11) is transformed to the fol-
lowing:

P (X (t, y) ⊂ Z(t) | y0t, y1t)
=
∫

(Λ1/2)−T ′D(t)
f(x, Ik)dx,

}
(11)′

where Ik is the unity k × k matrix.
The value y1t is actually realized together with yt and

is unknown. Therefore, it is possible to guarantee the

inclusion X (t, y) ⊂ Z(t) with conditional probabil-
ity not smaller than the minimum of value (11) ((11)′)
over all y1t ∈ Y1t. In order to provide the high
probability of covering of the multiestimates, consider
the concentration ellipsoid Et(l) = {x ∈ im γ(t) :
x′γ(t)−x ≤ l2} such that P (x0(t)−m0(t) ∈ Et(l)) =∫
‖x‖≤l

f(x, Ik)dx ≥ 1 − ε, k = rank γ(t). Then we
have the equality of the events
{X (t, y) ⊂ Z(t)+Et(l)} = {x0(t)−m0(t) ∈ D̃(t)},

(12)
where

D̃(t) =
{
x : x+ α(t) + X 1(t, y)

⊂
⋃

y1t∈Y1t

(
α(t) + X 1(t, y)

)
+ Et(l)

}
.

(13)

Whereas Et(l) ⊂ D̃(t), the inequality
P (X (t, y) ⊂ Z(t) + Et(l) | y0t, y1t) ≥ 1− ε (14)

is valid for any signal y1t.

4 Evolutionary equations for covering set with the
account of confidence sets

In this section, we try to reduce the exhaustive search
of uncertain signals y1t under construction of cover-
ing set for a multiestimate and simultaneously to con-
struct the evolutionary covering set. Note that y0(t) ∼
N(0, J(t)), where matrices J(t) are defined by the
evolutionary relations
J̇ = C(t)L+ L′C ′(t) +R(t), L(0) = Om;
L̇ = A(t)L+ PC ′(t), L(0) = On×m;
Ṗ = A(t)P + PA′(t) +Q(t), P (0) = γ0.
For any t ∈ [0, T ] let us choose the concentration el-
lipsoid Yt(l) = {x ∈ im J(t) : x′J(t)−x ≤ l2}
such that P (y0(t) ∈ Yt(l)) =

∫
‖x‖≤l

f(x, Ik)dx >

0.99, k = rank J(t). Then it is possible to assume
practically that y1(t) ∈ y(t) − Yt(l), i.e. the confi-
dence set y(t) −Yt(l) covers the signal y1(t). There-
fore in (8), (10), and (13), we can consider the narrower
set
Ȳ1t = {y1t ∈ Y1t : y1(s) ∈ y(s)−Ys(l),
s ∈ [0, t]}.

}
(15)

In case of small matrices Q, R and γ0 in (1) inclusion
(15) essentially reduces the search of the determined
signals under construction of covering set. For simplifi-
cation in case of small random parameters it is possible
a little to expand inclusion (15):

y1(s) ∈ y(s)−Ys(l), s ∈ [0, t]. (15)′

With the account of restrictions (15) consider an evo-
lutionary construction of such covering set, which
in the absence of random parameters, coincides with
X 1(t, y). Let us pass to the approximating discrete
scheme (4), (5). Purely random system (2) in discrete
scheme can be written as
x0

i = X∆
i x

0
i−1 + ξ∆

i , cov(ξ∆
i , ξ

∆
i ) = Q∆

i

=
∫ i∆

(i−1)∆
X(i∆, s)Q(s)X ′(i∆, s)ds;

y0
i = C∆

i x
0
i−1 + η∆

i , cov(η∆
i , η

∆
i ) = R∆

i

=
∫ i∆

(i−1)∆

(( ∫ i∆

s
C(t)X(t, s)dt

)
Q(s)( ∫ i∆

s
C(t)X(t, s)dt

)′
+R(s)

)
ds, cov(ξ∆

i , η
∆
i )



= S∆
i =

∫ i∆

(i−1)∆
X(i∆, s)Q(s)

( ∫ i∆

s
C(t)

X(t, s)dt
)′
ds.

Note that y0
i ∼ N(0, Ji), where matrices Ji defined

by the recurrent relations
Ji = C∆

i Pi−1C
∆′

i +R∆
i , Pi

= X∆
i Pi−1X

∆′

i +Q∆
i , P0 = γ0, i ≥ 1.

}
(16)

Choosing the concentration ellipsoid Y∆
i (l) = {x ∈

imJi : x′J−i x ≤ l2} such that
∫
‖x‖≤l

f(x, Ik)dx =
P (y0

i ∈ Y∆
i (l)) > 0.99, k = rank Ji, we can assume

that the inclusion y1∆
i ∈ yi−Y∆

i (l) is practically valid.
Introduce the sets
X̃∆

i = X̃∆
i (X̃∆

i−1 × V∆
i ), X̃∆

0 = X̄0,

Y∆
i = C̃∆

i (X̃∆
i−1 × V∆

i ) +W∆
i ,

Y∆
i (l, y) = Y∆

i

⋂(
yi −Y∆

i (l)
)
.

 (17)

The set Y∆
i (l, y) represents the family of all signals y1

i

that can be realized in system (4) accordance with the
confidence set yi − Y∆

i (l). In the absence of random
parameters we obtain the singleton Y∆

i (l, y) = {y1
i }.

Using Kalman’s filter we get
m0

i = X∆
i m

0
i−1 +Ki−1(y0

i − C∆
i m

0
i−1),

m0
0 = 0; Ki−1 = (S∆

i +X∆
i γi−1C

∆′

i )(R∆
i

+C∆
i γi−1C

∆′

i )−, γi = X∆
i γi−1X

∆′

i +Q∆
i

−Ki−1(S∆
i +X∆

i γi−1C
∆′

i )′, i ≥ 1,

 (18)

where Law(x0
i | y0i, y1i) = N(m0

i , γi). Here y1i =
{y1

1 , . . . , y
1
i } and y0i is defined similarly.

As in (8), let ki be a vector satisfying the first equa-
tion in (18), where the signal y0 is replaced by y, and
αi be a vector satisfying to the similar equation, where
the signal y0 is replaced by −y1∆. Then we can form
the set

Zi = ki +
⋃

y1
· ∈Y∆

· (l,y)(αi + X∆
i ) (19)

and use it as a covering one for the discrete multiesti-
mate X∆

i (y) = x0
i + X∆

i . Note that Zi = X∆
i if the

random parameters are absent.
Unfortunately, covering sets (19) are not recurrent as

a rule. Now we a little expand sets (19) and make their
recurrent ones. We examine the recurrent system of
sets:
Ai = (X∆

i −Ki−1C
∆
i )Ai−1 −Ki−1Y∆

i (l, y),
A0 = {0}, X̃∆

i =
(
X̂∆

i−1 × V∆
i

)⋂{
z ∈ R2n+m : C̃∆

i z ∈ Y∆
i (l, y)−W∆

i

}
, X̂∆

i

= X̃∆
i X̃∆

i , X̂∆
0 = X̄0, i = 1, . . . , j∆

t + 1.


(20)

Theorem 2. Let Ai, X̃∆
i , X̂∆

i be the sets defined by
(20). Then with the account of restrictions (17) we re-
ceive

⋃
y1
· ∈Y∆

· (l,y)(αi +X∆
i ) ⊂ Ai + X̂∆

i , i ≥ 1. The

set Ẑi = ki+Ai+X̂∆
i covers the multiestimateX∆

i (y)
with conditional probability
P (X∆

i (y) ⊂ Ẑi | y0i, y1i) =
∫
Bi
f(x, γi)dx, (21)

where the function f is the same as in (11), and the set
Bi is of the form
Bi =

{
x : x+ αi + X∆

i ⊂ Ai + X̂∆
i

}
. (22)

The minimum of relation (21) over all y1
· ∈ Y∆

· (l, y)
is the guaranteed result of inclusion’s probability. Note
that Ẑi = X∆

i if the random parameters are absent.

This theorem is established by induction. The same as
in (12) – (14), it is possible to add the ellipsoid Ei(l) to
set Ẑi in order to obtain the guaranteed result of type
(14).
Note that for any given signal y1t in (3) the kj∆

t +1 con-
verges almost surely to the k(t) when ∆ → 0. Thus,
taking into consideration Theorem 1 we come to
Theorem 3. Suppose d(·, ·) is the Hausdorf metric

for compact sets. Then d(Zj∆
t +1,Z(t) converges al-

most surely to zero when ∆ → 0. Here Z(t) is de-
fined by (8), where the set Y1t is replaced by (15). The
same convergence takes place for the multiestimates
X∆

j∆
t +1

(y) and X (t, y).

5 Example
Consider the system of Ito’s equations:
dx = dξ, t ∈ [0, T ], Law (x0) = N(x̄0, γ0),
dy = dη + (x+ w)dt, y0 = 0, ‖w(t)‖ ≤ ν,
x, y ∈ R2, ‖x̄0‖ ≤ µ.

Here w(·) is an uncertain function; ξ(t), η(t) are in-
dependent Wiener processes with cov(dξ, dξ) = Qdt,
cov(dη, dη) = Rdt. Let’s divide the segment [0, T ]
into n1 equal parts and set ∆ = T/n1, ti = ∆i, i =
1, . . . , n1. Integrating the system by steps with the help
of Cauchy’s formula we get
xi = xi−1 + ξi, ξi = ξ(ti)− ξ(ti−1), yi

= ∆xi−1 + ηi + wi, ‖wi‖ ≤ ν∆, cov (ηi, ηi)
= R∆ +Q∆3/3, cov (ξi, ηi) = Q∆2/2,
cov (ξi, ξi) = Q∆; i = 1, . . . , n1.

Here C∆ = ∆I2, V = {0}, W∆ = {w : ‖w‖ ≤
ν∆}, X̄0 = {x : ‖x‖ ≤ µ}. The determinate com-
ponent is constant: x1

i ≡ x̄0, and the determinate sets
are of the form X∆

i = X̄0 ∩ ∩t
i=1(y1

i −W )/∆. Let us
write system (18):
m0

i = m0
i−1 +Ki−1(y0

i −∆m0
i−1), m0

0 = 0;
Ki−1 = (Q∆2/2 + γi−1∆)(R∆ +Q∆3/3
+∆2γi−1)−, γi = γi−1 +Q∆−Ki−1(Q∆2/2
+γi−1∆), i ≥ 1.
Let, for example, Q = q2I2, R = r2I2, γ0 =
γI2. Then γi ≡ γ0, where γ = q

√
r2 + q2∆2/12,

K = 2
√

3/(
√

3∆ +(12r2q−2 + ∆2)1/2)I2. The vec-
tor m0

i submits to the stable system m0
i = m0

i−1

+K(y0
i − ∆m0

i−1). The influence of initial condi-
tions in this system under large i is negligible. The
system of equations (16) gives Ji = (∆2γ + r2∆ +
q2∆3(i − 2/3))I2. For any i we choose we choose l
in the ellipsoid Yi(l) = {x : x′J−1

i x ≤ l2} so that
P (y0

i ∈ Yi(l)) = 1 − exp(−l2/2) > 0.99. There-
fore, l > 2

√
ln 10. Let us set numerical parameters:

µ = 1, ν = 0.5, q2 = 0.06, r2 = 0.01, T =
10, ∆ = 0.1, n1 = 100. Then γ = 0.0246, K =
2.1774I2, m0

i = 0.7823m0
i−1 + 2.1774y0

i . We write
the system:
X̂∆

i = X̂∆
i−1 ∩ 10(Y∆

i (l, y)−W∆), Y∆
i (l, y)

= {‖x‖ ≤ 0.15} ∩ (yi −Yi(l)); Yi(l) =
{
x

: ‖x‖ ≤ 2
√

ln 10(∆2γ + r2∆ + q2∆3(i− 2/3))
}
.

It follows from this that the covering set can be con-
structed by formulas Ẑi = ki +Ai + X̂∆

i .



It is necessary to add the concentration ellipsoid Ei(l)
= {x : ‖x‖ ≤

√
γl} to Ẑi in order to obtain the

guaranteed result of type (14), where l is defined by
1 − exp(−l2/2) = 1 − ε, l =

√
−2 ln ε. The typical

picture of covering is shown on Fig.1. Here the green
spot is a multiestimate X∆

i (y), the blue spot is a cover-
ing set Ẑi, the red cross is a true state, and the red star
is true Kalman’s estimate.

Fig. 1

6 Accounting of communication constraints
We have chosen above the concentration ellipsoid so

that P (y0
i ∈ Y∆

i (l)) > 0.99. Therefore, the inclusion
yi = y0

i + y1∆
i ∈ Y∆

i (l) + Y∆
i is practically valid.

Equations (1) and characteristics of noises are known
in CPI. Hence, for the construction of covering set for
a multiestimate, it is necessary to transfer a signal ob-
served on object in CPI as precisely as possible. We lay
aside the important question on size ∆ and consider it
already chosen.

6.1 Noiseless constraints
In this subsection we generalize the approach of

[Savkin and Petersen, 2003] for our statistically uncer-
tain situation. Note that in [Savkin and Petersen, 2003]
only determined linear systems with quadratic limita-
tions were considered.
For vector y ∈ Rm consider the sup-norm ‖y‖∞ =

max
i
|yi|, where yi are coordinates of y. The obvious

inequality ‖y‖∞ ≤ ‖y‖ is valid, where ‖ · ‖ is Eu-
clidean norm. Corresponding norms for matrices are
designated similarly. Let Ba = {y : ‖y‖∞ ≤ a} be
a sphere of radius a. Given natural number q, we di-
vide the sphere Ba into qm subspheres of type I1

j1
×

· · · × Im
jm

, where indexes ji independently vary in the
set {1, . . . , q} and Ii

j = {yi : −a+2(j−1)a/q ≤ yi <

−a+ 2ja/q}, i = 1, . . . ,m, j = 1, . . . , q − 1; Ii
q =

{yi : a− 2a/q ≤ yi ≤ a}. The vector y ∈ Ba is coded
by the sequence η(y) = (j1, . . . , jm), if y ∈ I1

j1
×· · ·×

Im
jm

. On the contrary, each set (j1, . . . , jm) of natural
numbers independently varying in the set {1, . . . , q}

is assigned the vector γ(j1, . . . , jm) with coordinates
γi = −a+ (2ji − 1)a/q, i = 1, . . . ,m. This vector is
the geometric center of the set I1

j1
× · · · × Im

jm
.

Let a = max{‖y‖∞ : y ∈ Y∆
i (l) + Y∆

i , i =
1, . . . , n1}. In the instant i, the coding-decoding is
given by the formulas (j1, . . . , jm) = η(yi), if yi ∈
Ba; yi = γ(j1, . . . , jm). By construction we receive

‖yi − yi‖∞ ≤ a/q, yi ∈ yi +Ba/q. (23)
Therefore,
Y∆

i (l, y) ⊂ (yi +Ba/q −Y∆
i (l)) ∩ Y∆

i = Yi(l, y).
(24)

For constructing of covering sets in CPI, the sets from
(24) are used in relations (19) – (22) instead of ones
from (17). Thus, Theorem 2 remains valid.
Let us choose the value q so that values of the vector
ki and the vector ki defined from the equation
ki = X∆

i ki−1 +Ki−1(yi − C∆
i ki−1), k0 = 0, (25)

differed slightly. Suppose also that matrices A, C,
Q, R in (1) are constant. Introduce the matrices Ã =
X∆ − S∆R∆−C∆, B = (Q∆ − S∆R∆−S∆′)1/2.
Let the following conditions be fulfilled: (a) the pair
(C∆, Ã) is observable; (b) the pair (A∆, B) is con-
trollable; (c) R∆ > 0. Then it is known [Liptser and
Shiryayev, 2000] that lim

i→∞
γi = γ0. In addition, the

matrix K = (S∆ + X∆γ0C∆′)(R∆ + C∆γ0C∆′)−1

is stable, i.e. ‖K‖ < 1. Suppose that the number a
defined above is bounded for all n1, and let n1 be a
number such that ‖Ki‖ ≤ β < 1 for all i > n1.
Theorem 4. Let the conditions (a) – (c) be fulfilled.

For any ε > 0 and i > n1 we choose the number q so
that

δδ1a/(1− β)/q < ε, (26)
where ‖Ki‖ ≤ δ, ∀i, δ1 = max

1≤i≤n1
(‖A‖ + δ‖C‖)i.

Then for all i > n1 we have ‖ki − ki‖ < ε.
The theorem is established by comparison of equa-

tions (25) and (18) with the account of inequality (23).
If in relation (19) we replace the vector kt on kt, the
received set will differ from (19) in Hausdorf’s metric
also on value ε.
Note that inequality (26) establishes a connection be-

tween the accuracy of approximation of covering sets
(it is defined by parameter ε) and the constraint on the
capacity of the data transfer channel (is defined by pa-
rameter q).

6.2 Constraints with Gaussian noise
One-dimensional Gaussian channels were considered

in [Liptser and Shiryayev, 2000]. Here we generalize
the results for multidimensional case and adapt these.
This is not quite trivial. Consider the system in R2n

exited by ‘white noise’:
zi = Aizi−1 + χi + Ki−1y

1
i , z0 = [0;x0

0], (27)
where Ai = [X∆

i −Ki−1C
∆
i ,Ki−1C

∆
i ; 0n, X

∆
i ], zi

= [ki;x0
i ], cov(χi, χi) = Qi = [Ki−1R

∆
i K

′
i−1,Ki−1

×S∆′

i ;S∆
i K

′
i−1, Q

∆
i ], Ki = [Ki; 0n×m], χi =

[Ki−1η
∆
i , ξ

∆
i ]. We will use Encoder Class of the form

θi = A0
i−1(θ) + Bi(Ci−1zi−1 + ζi), where Ci =



(λi(θ)β̃−i )1/2[In, 0n]; A0 and λ are nonanticipating
values, detBi 6= 0; ζi is standard Gaussian vector
independent of χi. The matrix β̃i is the left upper cell
of matrix βi that satisfies the Riccati equation

βi = Ai(βi−1 − βi−1C′i−1(In
+Ci−1βi−1C′i−1)−1Ci−1βi−1)A′i +Qi.

}
(28)

The parameters of encoders are subject to the energy
constraints
E‖B−1

i+1A
0
i (θ) + (λi(θ)β̃−i )1/2ki‖2 ≤ P, i ≥ 1. (29)

Generalizing the result from [Liptser and Shiryayev,
2000] we obtain
Theorem 5. If the determinate vector y1

i is known,
the mean-square optimal encoder is received when
λi = P/rankβ̃i and B−1

i+1A
0
i (θ) = −Ciẑi, where

ẑi = E(zi | θ0i, θ1i). The value ẑi satisfies the cor-
responding Kalman filter, and its first component k̂i is
optimal decoder.
As the value y1

i ∈ Y∆
i is unknown, we use the mini-

max scheme as follows. First, we define recurrently the
value
δi = P/

(
miny1∗

i
maxy1i p′iβ̃

−
i pi + rankβ̃i

)
,

y1∗
i ∈ Y∆

i , y
1i ∈ Y∆

1 × · · · × Y∆
i , i ≥ 1.

}
(30)

Here β̃i is as above the left upper cell of matrix βi (28),
where now λi = δi, and pi is the first component of the
vector pi satisfying the equation
pi = Ki−1(y1∗

i − y1
i ) + Ai

(
pi−1 − βi−1C′i−1(In

+Ci−1βi−1C′i−1)−1Ci−1pi−1)
)
, p0 = 0.

}
(31)

If we consider the recurrently defined vector y1∗
i as

y1∗
i = argmin maxy1i p′iβ̃

−
i pi, (32)

then we get
Theorem 6. Let the values βi, δi, and y1∗

i be defined
by (28), (30) – (32). Then the encoder of the form
θi = Bi

(
Ci−1(zi−1 − z̃i−1) + ζi

)
,

z̃i = Ki−1y
1∗
i + Ai

(
z̃i−1 + βi−1C′i−1(In+

Ci−1βi−1C′i−1)−1B−1
i θi

)
,

 (33)

ensures energy constraints (29) for any determinate
vector y1

i ∈ Y∆
i . The corresponding decoder k̂i is the

first component of the vector ẑi, for which
ẑi = Ai

(
ẑi−1 + βi−1C′i−1(In+

Ci−1βi−1C′i−1)−1(B−1
i θi+

Ci−1pi−1)
)

+ Ki−1y
1
i .

 (34)

Here ẑi + pi = z̃i, and the error of restoring of ki is
equal to E‖k̂i − ki‖2 = tr β̃i.
For equations (27), (33), and (34) with unknown vec-

tor y1
i we can apply the same method as above for cov-

ering of the multiestimate in CPI. Note that we have to
use the inclusion y1

i ∈ Y∆
i as the vector yi used in the

object is unknown in CPI.

7 Conclusion
In this paper, a construction of estimators in the form

of sets has been considered for phase states of linear
control systems. The given estimators can be used for
the solution of control problems with incomplete in-
formation. The system was supposed to be linear and
subject to influence of disturbances of the mixed na-
ture. The determinate components of disturbances laid

in convex and compact sets, and random ones were
Wiener processes. According to measurement random
information sets (multiestimates) were under construc-
tion, for which were defined covering them sets. Last
sets provide the inclusion with high conditional prob-
ability irrespective of multiestimation parameters. Re-
sults has been illustrated on an example. A modifica-
tion of the problem has been considered at presence of
communication constraints. It was studied two kinds of
communication channels: silent, supposing a discrete
information transfer by words of the limited length, and
the channel with Gaussian disturbances. The relations
characterizing the accuracy of the parameter transfer
for the construction of sets covering the multiestimates
has been received.
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