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Abstract
We compare two methods for controlling synchronisa-

tion in the Kuramoto model on an undirected network.
The first is by driving selected oscillators at a desired
frequency by linking to an external driver, and the sec-
ond is by including adaptive lags within the Kuramoto
interactions, where the lags evolve according to a dy-
namics involving the reference frequency. Performing
numerical simulations, we find that driving via adap-
tive lags allows for stronger alignment to the external
driver at lower cost. Numerical results are backed up
by equilibrium analysis based on a fixed point ansatz
assuming frequency synchronised clusters and solving
the spectrum of the associated Jacobian. A simple intu-
itive model emerges based on the interaction between
splayed clusters close to a critical point.
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1 Introduction
The ability of networks of coupled entities to achieve

synchronised dynamics is fundamental to a variety of
scientific applications, from physical, chemical, bio-
logical and even social systems. To this end, the Ku-
ramoto model [Kuramoto, 1984] on a network, defined
by

θ̇i = ωi +
K

N

N∑
j=1

Aij sin(θj − θi), (1)

combines a number of simple features yet exhibits rich
behaviours (see [Acebron et al., 2005; Dorogovtsev,
Goltsev and Mendes, 2008; Arenas, 2008; Doerfler and
Bullo, 2014] for recent reviews). Here θi is a time-
dependent phase angle at node i of a network of N
nodes of a graph G given by the adjacency matrix Aij ,

with ωi the native frequencies drawn from some statis-
tical distribution. The model is well known to display
a critical transition for the complete graph for N → ∞
at some coupling K at which a proportion of oscil-
lators spontaneously synchronise to a frequency that
is the mean of the native frequency ensemble ω̄; the
normalised coupling may be absorbed into a constant
σ ≡ K

N . At couplings beyond this the phase differences
between them tend to zero. Many papers have explored
this and the role of topology in influencing this effect
[Hong, et al., 2002; Ichinomiya, 2004; Restrepo, Ott
and Hunt, 2007; Oh et al., 2006; Gómez-Gardenes,
Moreno and Arenas, 2007] or the inter-relationship be-
tween topology and the frequency allocation on the net-
work [Brede, 2008]. More recently attention has turned
to control problems in this context. The standard ap-
proach to control on a network is to attach external
controllers to the nodes on which are defined a linear
dynamical system, and pose the analogous question to
the Kalman filter [Stengel, 1994]: is the network con-
trollable in the sense of any final state being reachable
from any initial state? In synchronisation problems this
is more narrowly defined: can the system be controlled
to reach synchrony from any random initial condition.
Implicit in this objective is synchrony to the mean of
the frequency ensemble. In this paper we shall explore
a generalisation of this, to seek improved synchronisa-
tion, at lower ‘cost’ – in terms of coupling strength –
and, significantly, to frequencies other than the mean
of the ensemble of native frequencies.
The classical work on external controllability on net-

works is that of Liu, Slotine and Barabasi [Liu, Slo-
tine and Barabasi, 2011] who adapt the Kalman filter
approach. As inferred, here the objective is to guar-
antee that any final state of a vector of variables Xi

is achievable from any initial input using linear con-
trol. More recently, the work has also been gener-
alised to some forms of non-linear control by Arsi-
walla, Barzel and Barabasi [Arsiwalla, 2016]. Within
the linear model, problems of minimum number of
nodes and minimum cost have been explored by Li et



al. [Li et al., 2016]. Within synchronisation problems,
the final state is more prescribed, namely frequency-
or phase-synchrony. Hamiltonian control for the Ku-
ramoto model has been explored by Gjata et al [Gjata et
al., 2016], where the Kuramoto model can be written in
Hamilton form using action-angles variables [Garcia-
Morales, Pellicer and Manzanares, 2008; Kalloniatis,
2014; Witthaut and Timme, 2014]. However this
method works in the regime of partial synchronisation
where perturbations then allow the fully synchronised
state to be achieved. Closer in spirit to our approach,
an adaptive model of control has been explored by
Eom, Boccaletti and Caldarelli [Eom, Boccaletti and
Caldarelli, 2016], but where the network itself evolves
through a fitness model to improve synchronisation.
An alternative approach considers an adaptive coupling
[Skardal, Taylor and Restrepo, 2014]. In all of these
cases the adaptation improves synchronisation to the
mean frequency. Are different collective frequencies
possible? May control facilitate this?
Our paper takes its cue from the lesser-known

Kuramoto-Sakaguchi model which introduces a phase
lag or frustration λi

θ̇i = ωi +
K

N

N∑
j=1

Aij sin(θj − θi + λi), (2)

This model is known for the property that the system
does not synchronise to the mean of the ensemble by
virtue of the absence now of the antisymmetry of the
interaction function. In [Lohe, 2015], it was observed
that such lags may be used to control the system to a
predefined frequency for the complete network case.
In our previous paper [Brede and Kalloniatis, 2016]
we showed how a codynamics, where the λi become
functions of time with their own evolution equation,
can improve synchronisation – indeed, achieve perfect
phase synchronisation. This arises essentially because
the phase shifts achieve an equilibrium configuration
that overcomes the barrier posed by the non-uniform
native frequencies for perfect synchronisation θi = θj .
In this paper we modify this adaptive lag mechanism to
show how it can become a control model in the sense
of guaranteeing synchronisation to a specified external
frequency. However, an external control version of this
is also possible – to which we compare the adaptive
lag model. We find, in fact, that the adaptive model
is more efficient in terms of required controlled nodes
at achieving the desired frequency and with better syn-
chronisation. In this paper we focus on relatively small
networks of N = 40 where we can elucidate the un-
derlying mechanisms, however we have run the full
numerical computations for larger scale systems, for
N ∼ 1000.
The paper is structured as follows. First we outline

the adaptive and reference models explicitly. We then
show a range of numerical simulations of the model for
a network of N = 40 nodes, and identify the different

phases of the system. We then conduct a fixed point
analysis to examine how stability properties relate to
the regimes we observe numerically. Important for this
will be an ansatz based on two clusters of nodes on the
network – those subject to control and those not. We
then probe particular regions of the phase diagram. We
finally summarise and conclude.

2 Adaptive lags vs external control
We compare two models where Kuramoto sychroni-

sation is controlled to some external driving frequency
Ω. The first we may refer to as a reference model:

θ̇ = ωi + σ
∑
j

Aij sin(θj − θi)

+ηbi sin(Ωt− θi) (3)

Here, an oscillator θi couples to an external driver when
bi = 1 or is left to itself to synchronise according to its
adjacent partners when bi = 0. The driver strength is
given by η.
An alternate model is one where time-dependent lags
λi(t) are introduced but which co-evolve with the θi:

θ̇i = ωi + σ
∑
j

Aij sin(θj − θi + λi)

λ̇i = τbi sin(Ωt− θi). (4)

Here again, when bi = 1 the lags co-evolve and when
bi = 0 they are frozen in which case we assign ini-
tial condition λi(0) = 0, or simply λi(0) = biλ with
λ ∈ (−π, π) drawn from a random uniform distri-
bution. The phases θi corresponding to nodes with
bi = 0 then evolve according to their own local syn-
chronisation interactions on the network. The con-
stant τ here represents the time constant associated
wth the dynamical lags. One motivation for the sec-
ond model is our earlier work on adaptive lag dynamics
λ̇ = τ

∑
j Aij sin(θj − θi) where we found this could

enhance synchronisation compared to the ordinary Ku-
ramoto dynamics while failing to guarantee the exter-
nal collective frequency to which this synchronisation
occurs. The present version elevates this interaction to
a control model with explicit reference to an external
driving frequency Ω.
We wish to compare the behaviours of these models

in terms of driving phases to the external frequency,
θi ≈ Ωt, as functions of the various strengths η, τ as
the density of control nodes, ρ =

∑
i bi/N varies be-

tween 0 and 1.

3 Numerical solutions
We begin by showing the results of numerical integra-

tion of the equations of motion for the two models. Us-
ing a fourth order Runge-Kutta method with step size



 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

ρ

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

η

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

ρ

 0

 0.5

 1

 1.5

 2

 2.5

 3

τ

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 1. Phase diagram for random regular graph of k =
8, N = 40, showing the fraction of 100 instances achieving full
synchronisation to the frequency Ω across the parameter space of ρ
vs τ for the adaptive lag model (top) and ρ vs η for the externally
driven reference model.

∆t = 0.1 we integrate out to t = 5×105 time steps for
σ = 1. Simulations are carried out for random reg-
ular networks of degree k = 8, a deliberate choice
to reduce effects of network heterogeneity in this ini-
tial investigation. Native frequencies ωi are randomly
drawn from the uniform distribution [−1, 1] so that for
each instance the average frequency ω̄ ≈ 0. We choose
Ω = 2.5 – a controlling frequency clearly outside the
interval for the native frequencies. We scan across the
remaining two parameters for the two models: (ρ, τ)
for the adaptive lags and (ρ, η) for the externally driven
model. The degree of synchronisation is measured by
Kuramoto’s order parameter

r = ⟨ 1
N

|
∑
j

eiθj |⟩ (5)

where r = 1 represents full synchronisation. We also
measure the closeness of the average instantaneous fre-
quency to the external frequency Ω via

∆ = ⟨ 1
N

∑
i

|θ̇i − Ω)|⟩, (6)

where brackets indicate averages over time (after dis-
carding a transient).
Numerical experiments show that given configura-

tions either achieve very good synchronisation to the
external frequency (∆ < 10−4) or fail to synchronise.

Accordingly, for given densities of controlled oscilla-
tors ρ and given parameters τ or η we measure the frac-
tion of configurations that achieved synchronisation to
the external frequency. In Fig. 1 we show density plots
for the fraction of configurations achieving full syn-
chronisation to the frequency Ω: white regions indicate
that systems achieve full synchrony, while black indi-
cates regions in which configurations fail to synchro-
nise. We note that for low values of τ transients be-
come very long – which we shall explain later – and so
for τ < 0.5 one must integrate up to very large times to
establish whether an instance has synchronised. Hence
numerical results in this region have to be seen as a
lower bound for the number of synchronised configu-
rations.
First we observe a minimum density of controlled os-

cillators ρ for synchronisation to occur, which is the
same for both models, i.e. ρc ≈ 0.3. More inter-
estingly, we see that the adaptive lag model allows
for synchronisation to the driving frequency even at
very small values of τ , whereas the reference model
clearly requires substantial coupling strength η. The
contrast with the reference model is unambiguous: be-
low η = 1 systems do not synchronise at any ρ, while
in the lag-controlled model at least some synchronised
configurations are observed for any choice of τ . Close
to 100% synchronised configurations are achieved for
much lower values of τ ≥ 1 for the lag-controlled case
as compared to η ≥ 8 in the reference model.
In the following we seek to understand these be-

haviours more analytically using fixed point analysis.

4 A two cluster ansatz for lag model
Prompted by the observation in the previous section

that for general ρ synchronisation to the external fre-
quency, though very high, is never quite perfect, we
perform an equilibrium analysis allowing for two clus-
ters in the fixed point ansatz: one consisting of the os-
cillators that phase synchronise alongside controlling
phase lags (bi = 1), identified by nodes in a sub-graph,
which we denote i ∈ G1, and the other those nodes with
without lags (bi = 0), i ∈ G2 = G − G1. So the ansatz
reads

θi(t) = Ωt+ ϑi(t), i ∈ G1

θi(t) = Ωt+ αi + φi(t), i ∈ G2

λi(t) = µi + χi(t) (7)

with ϑi, φi and χi considered small fluctuations.
One of us has used ansaetze such as this in the study of

a multi-network generalisation of the Kuramoto model
[Kalloniatis and Zuparic, 2016; Holder, Zuparic and
Kalloniatis, 2017], where we allow for two or three rel-
atively shifted but internally phase synchronised clus-
ters. Within such tight constraints, a great deal of an-
alytical tractability is obtained. Here we relax the re-
quirement of exact phase synchronisation within the
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Figure 2. Example of clustering for N = 40, ρ = 0.8 where
grey are the controlled θi−Ωt, cyan are the uncontrolled θi−Ωt
and black are the αi derived from Eq. (11).

second cluster. In this respect we allow the cluster to
display an arbitrary degree of ‘splay’, αi ̸= αj , whose
consequences will be seen below.
Expanding the equations of motion Eqs. (4) we obtain

ϑ̇i = ωi − Ω+ σk
(1)
i sinµi + σk

(2)
i sin(αi + µi)

+O(1)
i (ϑ, φ, χ)

φ̇i = ωi − Ω− σk
(1)
i sinαi + σ

∑
j∈G2

Aij sin(αj − αi)

+O(2)
i (ϑ, φ, χ)

χ̇i = −τφi (8)

where k(a)i is the degree of node i with respect to nodes
in the sub-graph Ga, and O(a)

i are linear in the fluctu-
ations. Note here that we may form the fluctuations
into a super-vector v = (ϑ, φ, χ) so that the overall
linearised system takes the form

v̇ = W − Λv, (9)

with Λ the Jacobian which we give explicitly in the
next section. Thus steady-state solutions, if the sys-
tem is stable, are v∗ = Λ−1W after removal of any
zero-modes (or alternately, using the pseudo-inverse).
Requiring that the v̇ vanish, so that all the constant

parts are in the parameters µi, αi, gives:

ωi − Ω+ σk
(1)
i sinµi + σk

(2)
i sin(αi + µi) = 0,

i ∈ G1, (10)

ωi − Ω− σk
(1)
i sinαi + σ

∑
j∈G2

Aij sin(αj − αi) = 0,

i ∈ G2. (11)

Eqs. (10,11) define now the fixed point manifold.
The obvious procedure is to use the second of these,
Eq. (11), which is µi independent, to solve for αi first

and then use these in the first Eq. (10) to solve for the
µi. The αi equation may be simplified by allowing for
αi−αj to be small allowing the sin(αj−αi) term to be
re-expressed in terms of the graph Laplacian. Unfortu-
nately, there is no analytical solution for this, so we do
not pursue this option. However, the first equation may
be solved for sinµi:

sinµi =
(
−(ωi − Ω)(k

(1)
i + k

(2)
i cosαi)

±k
(2)
i | sinαi|[σ2(k

(1)
i )2 + 2k

(1)
i k

(2)
i cosαi

+(k
(2)
i )2 − (ωi − Ω)2]

1
2

)
/(

σ(k
(1)
i )2 + 2k

(1)
i k

(2)
i cosαi + (k

(2)
i )2)

)
.

If we subject all nodes to control so that αi = 0, in
which case ki = k

(1)
i , then sinµi = −ωi−Ω

σki
. Such a re-

sult for the equilibrium phase lags arises in [Brede and
Kalloniatis, 2016] where a different model was used for
the adaptive mechanism.
To illustrate clustering as one tight group and another

splayed, we show in Fig. 2 a run of a random regular
graph for N = 40 with ρ = 0.8, σ = τ = 1. The
plot shows the behaviour of θi−Ωt for both controlled
(gray) and uncontrolled (cyan) nodes. We see that the
32 controlled components, with bi = 1, give θi = Ωt
demonstrating their perfect phase synchronisation. The
remaining eight uncontrolled components show devia-
tions from Ωt that are each slightly different from each
other, and rapidly converge to the αi as derived from
Eq. (11), indicated in black.

5 Stability analysis of adaptive lags
In components, the Jacobian ΛAdLg is:

ΛAdLg
ij =

Λϑϑ
ij Λϑφ

ij Λϑχ
ij

Λφϑ
ij Λφφ

ij 0

τδij 0 0

 , (12)

where

Λϑϑ
ij = σ cosµiL

(11)
ij

+σ
∑
j′∈G2

cos(αj′ + µi)A
(12)
ij′ δij , (13)

Λϑφ
ij = −σA

(12)
ij cos(αj + µi), (14)

Λϑχ
ij = −σD

(11)
ij cosµi

−σ
∑
j′∈G2

A
(12)
ij′ cos(µi + αj′)δij , (15)

Λφϑ
ij = −σA

(21)
ij cosαi, (16)

Λφφ
ij = σL

(22)
ij cos(αi − αj) + σD

(21)
ij cosαi,(17)

where D
(ab)
ij represents the diagonal matrix of degrees

of the nodes of sub-graph Ga connected to Gb, and
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N

∑
i αi and µ = 1

N

∑
i µi from

Eqs. (10,11) in the adaptive lag model for N = 40 random reg-
ular ki = 8 with σ = τ = 1,Ω = 2.5, averaged over 300
instances, for different values of ρ. Note that these are independent
of τ . Inset: plot of 1

N

∑
i cos(µi + αi) averaged over the same

instances. Error bars here and in subsequent plots represent the stan-
dard error.

L
(ab)
ij = D

(ab)
ij − A

(ab)
ij represents the corresponding

Laplacian. The appearance of Laplacians of the vari-
ous sub-graphs within these components means we will
occasionally refer to ΛAdLg as a ‘super-Laplacian’.
The spectrum of the ordinary (‘combinatorial’) graph

Laplacian [Bollobas, 1998] is generally known to play
an important role in understanding coupled dynamical
systems on networks [Pecora and Carroll, 1998]. While
not quite as straightforward for the Kuramoto model,
the lowest eigenvalue, known as the Fiedler [Fiedler,
1973], indicates the slowest transient of the system
[Arenas, Diaz-Guilera and Pérez-Vincente, 2006] close
to synchronisation. But the entire spectrum leaves
an imprint in the dynamics across a range of cou-
pling, even quite far from synchronisation [McGraw
and Menzinger, 2008; Kalloniatis, 2010]. Much is
known about the spectrum of the graph Laplacian for
the classical graphs [Mohar, 1997], which enables us
to infer some properties of the spectrum of ΛAdLg.
In the absence of clustering, αi = 0 ∀ i, the super-

Laplacian ΛAdLg
ij involves factors of cosµi, a form

quite close to that encountered in our previous work
[Brede and Kalloniatis, 2016], and also not dissimilar
from that found from a stability analysis of the ordi-
nary Kuramoto-Sakaguchi model, Eq. (2). We know
there that cosµi > 0 provides a necessary condition for
stability. We thus can expect thresholds for instability
when αi ̸= 0. Moreover, ΛAdLg here is not symmetric,
so we expect a complex valued spectrum.
To proceed numerically now, we use Mathematica

considering a random regular network again of degree
ki = 8 but consisting of N = 40 nodes. We set σ = 1
and choose Ω = 2.5 as a case of an external frequency
well outside the range of frequencies ωi ∈ (−1, 1). We
use values τ = 1, 10, 100. To determine the spectrum
of ΛAdLg we compute αi for i ∈ G2 from Eq. (11), fol-
lowed by µi for i ∈ G1 from Eq. (10) and then with
these the eigenvalues of Λ. The αi, µi, which are evi-
dently τ independent, are shown in Fig. 3. We observe
that as ρ decreases the µ stay nearly constant while α
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Figure 4. Top: plot of the average value of the real part of the lowest
(in real part) eigenvalue of the super-Laplacian ΛAdLg for N =
40 random regular ki = 8 with σ = 1,Ω = 2.5, averaged over
300 instances, as a function of the density of controlled nodes ρ and
for different τ ; inset the real part on logarithmic scale; bottom: plot
of the imaginary part of the eigenvalue.

increases in magnitude until ρ = 0.4, at which point
even the equilibrium lag values increase up to ρ = 0.3.
We turn next to the lowest – in real part – eigenvalue

which is, as anticipated above, complex valued. In
Fig. 6 we plot this lowest eigenvalue, ℓ0, as a function
of the density of controlled nodes Nc, or alternatively
of ρ, and for three choices of τ . Here we average over
300 frequency and graph instances for four values τ .
Note that with our sign convention, a positive eigen-
value indicates stability of the fixed-point.
We observe a number of prominent features in Fig. 6:

that for ρ = 1 the real part of the eigenvalue be-
comes extremely small while its imaginary part attains
its largest value; and that below a certain threshold of
ρ = 0.3 eigenvalues become negative real valued. The
former result indicates long oscillatory transients in the
dynamical approach to equilibrium while the latter re-
sult demonstrates instability of the dynamics. Indeed,
we observe in full numerical solutions to the system at
ρ = 1 long term oscillations while for small ρ the sys-
tem seeks to synchronise to the mean frequency of the
oscillator ensemble. Comparing these situations to full
numerical solutions of the N = 40 case we observe os-
cillations for ρ = 1 even after t = 10, 000, where cor-
responding results for 0.7 < ρ < 0.9 show consistent
convergence to equilibrium at the driving frequency
Ω = 2.5. Below ρ = 0.7 the transients to external syn-
chronisation become longer and beyond the range of
the Mathematica calculations used here. We also see,
as predicted, that increasing τ has a more significant
impact on the imaginary part of the lowest eigenvalue
– in the stable regime. In the unstable regime, larger τ



has the effect of amplifying the negative real part. Note
that the value of ρ at which the instability occurs does
not change – because this only depends on the αi, µj

which are τ independant.
The origins of the instability may be understood by

examining the values of αi and µi across the range of
ρ, as shown in Fig. 3. Note that as ρ decreases, the
size of G1 decreases while that of G2 increases; thus
the number of µi ̸= 0 decreases (fewer lags are intro-
duced) and the number of αi ̸= 0 increases. In Fig. 3
we highlight in both cases the position of the value of
−π/2. It is evident that, for this size network, it is
just below ρ = 0.4 that the sum αi + µj exceed ±π/2
where the cosine factor in the super-Laplacian terms,
such as Λϑϑ, changes sign. From the inset of Fig. 3
we see that the averge value of cos(µi + αi) indeed
changes sign at ρ = 0.3. When ρ = 0.3 the µi achieve
their largest average value – and this is where the insta-
bility is evident in the average eigenvalue. Because of
this, the equilibria cease to be relevant below ρ = 0.3.
At a more intuitive level, varying ρ means varying the
population of tightly controlled oscillators in relation
to the increasingly splayed uncontrolled oscillators. In-
stability is triggered once the splay of the latter popula-
tion increases beyond a threshold where the combined
phase lag and splay exceed π/2.
This final observation warrants a further comment.

In previous experience with two-cluster approaches
[Kalloniatis and Zuparic, 2016; Holder, Zuparic and
Kalloniatis, 2017], we observed that the Lyapunov in-
stability closely coincided with the point where the
equations defining the equilibrium manifold, the ana-
logues of Eqs. (10,11), failed to have static solutions.
Thus, there, no instability on a static two-cluster solu-
tion was found. Here, even when increasing Ω we find
that static solutions in many cases are obtainable – but
the spectrum shows instability. This is simply a conse-
quence of the fact that we now allow here an arbitrary
degree of splay. The instability might be said to cor-
respond to where the oscillators of sub-graph G2 might
no longer be called a single ‘cluster’.
In summary then, we see that the spectral properties in

the vicinity of the two cluster fixed point explain both
the long transients in dynamics for ρ → 1, and increas-
ing τ , as well as instability for lower values of ρ where
the splay of only frequency synchronised uncontrolled
nodes overwhelm the dynamics.

6 Stability analysis for reference model
We now perform a similar analysis for the reference

control model. With the details given previously we
may be a little circumspect here. Firstly, there are no
explicit lags here, so in view of the possibility that per-
fect phase synchronisation might not be achievable we
include µi in the ansatz

θi(t) = Ωt+ µi + ϑi(t), i ∈ G1

θi(t) = Ωt+ αi + φi(t), i ∈ G2. (18)

This gives for the fixed point (ignoring fluctuations af-
ter inserting the ansatz in the defining equations)

ωi − Ω+ σ
∑
j∈G1

Aij sin(µj − µi)

+σ
∑
j∈G2

Aij sin(αj − µi)− η sinµi = 0,

i ∈ G1, (19)

ωi − Ω+ σ
∑
j∈G1

Aij sin(µj − αi)

+σ
∑
j∈G2

Aij sin(αj − αi) = 0,

i ∈ G2. (20)

The Jacobian is now a two-by-two block form

ΛRef
ij =

(
Λϑϑ
ij Λϑφ

ij

Λφϑ
ij Λφφ

ij

)
, (21)

where the individual entries are:

Λϑϑ
ij = σL

(11)
ij cos(µi − µj)

+σ
∑
j′∈G2

A
(12)
ij′ cos(αj′ − µi)δij

+η cosµi, (22)

Λϑφ
ij = −σA

(12)
ij cos(αj − µi), (23)

Λφϑ
ij = −σA

(21)
ij cos(µj − αi), (24)

Λφφ
ij = σL

(22)
ij cos(αi − αj)

+σ
∑
j′∈G1

A
(21)
ij′ cos(µj′ − αi)δij . (25)

These entries are more standard weighted Laplacians,
apart from the shift η cosµi whose sign is contingent
on the µi. Overall ΛRef is symmetric, and therefore
we may expect a purely real spectrum but with a shift
in the lowest eigenvalue according to the values of µi.
Alternately put, for η = 0, ΛRef has zero row and col-
umn sums and therefore has a spectrum bounded below
by a zero eigenvalue.
We compute first the equilibrium values of αi and µi

from Eqs. (19,20) which are shown in Fig. 5. Note that
these are now µ-dependent so the figure is somewhat
more complex. At one extreme, η = 100, the αi de-
pend on ρ inversely to the induced lags µi for the con-
trolled oscillators. Evidently, with such strong driving
the controlled oscillators achieve very small phase lags.
As ρ is reduced, the number of uncontrolled oscillators
increases so that a splay develops in this group, with αi

increasing in magnitude. As η decreases the cross-over
becomes marked. Importantly, very high coupling η
to the driving frequency is required to achieve ‘perfect
phase synchronisation’ µi ≈ 0. At the other extreme,



η = 1, the driving is so weak that the underlying Ku-
ramoto interaction, with coupling σ, causes even the
driven oscillators to be splayed. As ρ decreases, fewer
oscillators are driven, so more may participate in the
Kuramoto interaction. To say more beyond the cross-
over point requires completing the stability analysis.
We show the lowest eigenvalue as a function of ρ for

different η in Fig. 6. We observe a clear transition as
ρ decreases, the eigenvalue correspondingly decreases
until it reaches effectively zero. For η = 1 the eigen-
value is extremely close to zero.
To understand these behaviours we note that in the ab-

sence of the shift η cosµi in ΛRef , the lowest eigen-
value will always vanish. Thus, while the µi are small
at large ρ (as in Fig. 5) the shift in the spectrum is pos-
itive. Once one of the µi cross the threshold of −π/2
the shift is negative. For η = 1, the µi are already
large at ρ = 1 however at this point the combination
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Figure 5. Plots of µ = 1
N

∑
i µi (left) and α = 1

N

∑
i αi

(right) in the externally driven model from Eqs. (20, 19) for N =
40 random regularki = 8withσ = τ = 1,Ω = 2.5, averaged
over 300 instances, as a function of ρ for different values of η.
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Figure 6. Plot of the average value of the lowest eigenvalue of the
super-Laplacian ΛRef for N = 40 random regular ki = 8 with
σ = 1,Ω = 2.5 as a function of the density of controlled nodes
ρ and for different η.

η cosµi is now less than one. As ρ decreases, the num-
ber of oscillators resisting the Kuramoto interaction de-
creases and so the natural Kuramoto dynamics allow
some degree of convergence in phases – and hence the
µi decrease. Intuitively, at η = 1, which equals the
Kuramoto coupling σ = 1 chosen here, the externally
driven is a larger frustrated Kuramoto system with a
wider frequency distribution. For η < 1, not shown
here, the shift η cosµi in the spectrum assumes small
non-zero values that fluctuate in sign around zero.
We conclude then that for η > 1 there is a transition

to marginal stability for ρ ≈ 0.3. Indeed we even see
that this threshold value in ρ varies with η in the range
1 < η < 5, a property seen in the numerical results
of Fig. 1. In contrast to the adaptive lag model, the
transition here is not to an instability but to marginal
stability which would require a higher order analysis to
establish definitively the Lyapunov properties here.

7 Order parameter
We now compare for the two models numerical solu-

tion, Fig.7 (on a scale to make error bars discernible),
to truncation to leading order around the equilibria of
the order parameter r (inset). Using trigonometric for-
mulae we have for the adaptive lag model

r2 ≈ 1− 2

N2

(
2Nc

∑
i∈G2

sin2(αi/2)

+
∑

i,j∈G2

sin2((αi − αj)/2)

 (26)

and for the externally driven model

r2 ≈ 1− 2

N2

 ∑
i,j∈G1

sin2((µi − µj)/2)

+2
∑

i∈G1,j∈G2

sin2((µi − αj)/2)

+
∑

i,j∈G2

sin2((αi − αj)/2)

 . (27)

We use the equilibrium (µi, αi) to compute r here
and only include results down to the ρ value where the
ansatz becomes unstable.
Both numerical and analytical approaches show high

synchronisation down to densities of ρ = 0.3. The dis-
crepancy between the two may be attributed to tran-
sients persisting in the numerical results and to the need
for higher order corrections in the fluctuation expan-
sion in the reference model when marginal stability
arises. We have computed analogous numerical results
for η = 3 and see that no stable configurations appear
below ρ = 0.75. Thus there is consistency between
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Figure 7. Plot of the order parameter r from numerical calculation
for η = 5, 10, 100 in the externally driven model and τ = 2 for
the adaptive lag model; inset, combining numerical and approximate
results based on Eqs. (26,27).

analytical and numerical results in that higher η is re-
quired to enable the externally driven model to reach
the same levels of synchronisation down to the same
densities of controllers as the adaptive lag model.

8 Conclusion
We compared two models for controlling synchroni-

sation of Kuramoto oscillators to a desired external fre-
quency different from the mean of the native frequen-
cies. Even though both models exhibit similar transi-
tion points in the density of controllers, the adaptive
lags model is better than driving a proportion of the
oscillators externally: it achieves high levels of syn-
chronisation for couplings that can be an order of mag-
nitude weaker than the corresponding coupling to ex-
ternal drivers. Essentially, the lag model enables nearly
exact phase synchronisation for the driven population –
because of the dynamical adaptive mechanism – while
the externally driven version never truly achieves phase
synchronisation for even the driven subset.
The mechanism for this achievement of perfect syn-

chronisation can be understood in terms of stability
properties at the fixed point and intuitively in terms of
the splaying effects within the driven and non-driven
oscillator populations. Remarkably, standard equilib-
rium analysis goes far in understanding the non-linear
behaviours of these models – precisely because the tar-
get state in the control model corresponds to a regime
where linearisation is effective.
Though we have reported here the results for N = 40,

we have examined significantly larger graphs, which
will be reported elsewhere. Extensions of this work
will examine changes of topology – for example vary-
ing connectivities or exploring other classes of complex
networks. We conclude that well-known methods from
physics provide insight into control problems for dy-
namical systems on networks.
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Gómez-Gardenes, J. Moreno, Y. Arenas, A. (2007).
Phys.Rev. E 75, 066106.
Holder, A.B., Zuparic, M.L., Kalloniatis, A.C. (2017).
Physica D 341, 10-32.
Hong, H., Choi, M.Y., Kim B.J. (2002). Phys.Rev. E
65, 026139.
Ichinomiya, T. (2004). Phys.Rev. E 70, 026116.
Kalloniatis, A.C. (2010). Phys.Rev.E 82, 066202.
Kalloniatis, A.C. (2014). Ann.Phys. 348, 127-143.
Kalloniatis, A.C., Zuparic, M.L. (2016). Physica A
447, 21-35.
Kuramoto, Y. (1984). Chemical Oscillations, Waves
and Turbulence, Springer, Berlin.
Liu, Y., Slotine, J., Barabasi, A. (2011). Nature 473,
167.
Li, G., Hu, W., Xiao, G., Deng, L., Tang, P., Pei, J.,
Shi,L. (2016). New J. Phys. 18, 013012.
Lohe, M.A. (2015). Automatica 54, 114-123.
McGraw, P.N., Menzinger, M. (2008). Phys.Rev.E 77,
031102.
Mohar, B. (1997). Graph Symmetry: Algebraic Meth-
ods and Applications, Eds. G. Hahn, G. Sabidussi,
NATO ASI Ser. C 497, Kluwer, 225-275.
Oh, E., Lee, D.-S., Kahng, B., Kim, D. (2007).
Phys.Rev. E, 011104.
Pecora, L.M., Carroll, T.L. (1998). Phys. Rev. Lett.
80, 2109.
Restrepo, J.G., Ott, E., Hunt, B.R. (2007). Phys.Rev.
E 75, 066106, 2007
Skardal, P.S., Taylor, D., Restrepo, J.G. (2014). Phys-
ica D 267, 27-35.
Stengel, R.F. (1994). Optimal control and estimation,
Dover, USA.
Witthaut, D., Timme, M. (2014). Phys.Rev.E 90,
032917.


