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Abstract
Structure-preserving numerical techniques for com-

putation of eigenvalues and stable deflating sub-
spaces of complex skew-Hamiltonian/Hamiltonian ma-
trix pencils, with applications in control systems analy-
sis and design, are presented. The techniques use spe-
cialized algorithms to exploit the structure of such ma-
trix pencils: the skew-Hamiltonian/Hamiltonian Schur
form decomposition and the periodic QZ algorithm.
The structure-preserving approach has the potential to
avoid the numerical difficulties which are encountered
for an unstructured solution, implemented by the cur-
rently available software tools.
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1 Introduction
Several basic computational problems in optimal and

robust systems analysis and design involve structured,
e.g., Hamiltonian and symplectic, matrix pencils. Two
important problems, with many applications, are dis-
cussed below.
Some definitions are first recalled. A matrix pencil

λM − N is Hamiltonian if NJMH = −MJNH ,
and it issymplecticif NJNH = MJMH , where

J :=
[

0 In

−In 0

]
, J T = −J = J−1,

the superscriptsH and T denote the conjugate-
transpose and transpose, respectively, andIn denotes
the identity matrix of ordern. If M = I2n, defini-
tions for Hamiltonian and symplectic matrices are ob-
tained; for instance,N is Hamiltonian if (NJ )H =
NJ , and it isskew-Hamiltonianif (NJ )H = −NJ .

Note thatM ∈ C2n×2n is skew-Hamiltonian if and
only if ıM is Hamiltonian, whereı denotes the purely
imaginary unit. A matrix pencilλM − N is skew-
Hamiltonian/Hamiltonianif M is skew-Hamiltonian,
and N is Hamiltonian. These pencils have spectra
which are symmetric with respect to the imaginary
axis. Such pencils arrise in various domains of applied
mathematics, computational physics, chemistry, opti-
mal control, etc.

The skew-Hamiltonian/Hamiltonian Schur formof a
skew-Hamiltonian/Hamiltonian pencilλM −N is

JQJ T

(
λ

[
M11 M12

0 MH
11

]
−

[
N11 N12

0 −NH
11

])
QH

(1)
whereQ is unitary, M11, N11 ∈ Cn×n are upper
triangular, M12 is skew-Hermitian, and N12 is Her-
mitian, i.e., M12 = −MH

12, andN12 = NH
12. This

form displays the pencil eigenvalues. Some pencils
which lack this form can be embedded in pencils which
always have a skew-Hamiltonian/Hamiltonian Schur
form. For a matrix, the definition above can be spe-
cialized to (skew-)Hamiltonian Schur form. Real skew-
Hamiltonian matrices, and Hamiltonian matrices with-
out purely imaginary eigenvalues have Hamiltonian
Schur forms.

One basic computation in optimal and robust control
systems analysis and design is the evaluation of the
L∞-norm. An example is specifying upper bounds on
the weighted and/or mixed sensitivity transfer-function
matrices in theH∞ design problems. More gener-
ally, L∞-norms are used to quantify the trade-off be-
tween performance and robust stability. Consider a
linear time-invariant generalized system, described by
its state-space matrices and the associated transfer-
function matrix

G(λ) = C(λE −A)−1B + D, (2)



where A,E ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n,
D ∈ Cp×m, andλ is a complex variable replacing the
Laplace variable,s, for a continuous-time system, and
theZ-transform variable,z, for a discrete-time system.
For convenience, assume thatE is nonsingular. Briefly
speaking, theL∞-norm for (2) is defined as the peak
gain of the frequency response ofG(λ). This is finite if
and only if the matrix pencil(A,E) has no eigenvalue
on the boundary of the stability domain,Bs, where
Bs = {s | <(s) = 0}, for a continuous-time system,
Bs = {z | ‖z‖2 = 1}, for a discrete-time system, and
<(·) denotes the real part of a complex number. In this
case, which includes standard systems (E = In) with
A stable, theL∞-norm, also then calledH∞-norm, can
be expressed by the least upper bound,

‖G‖∞ := sup
λ∈Bs

σmax(G(λ)),

where σmax(M) denotes the largest singular value
of the matrix M . Quadratically convergent algo-
rithms [Bruinsma and Steinbuch, 1990] for the com-
putation of theL∞/H∞-norm use the purely imagi-
nary eigenvalues of a structured, Hamiltonian or sym-
plectic, matrix or matrix pencil at each iteration. (Ac-
tually, the pencils arising in the continuous-time case
are skew-Hamiltonian/Hamiltonian.) The detection of
purely imaginary eigenvalues is a delicate numerical
problem if an unstructured algorithm is used. Several
simple examples are given in Section 3.
Another fundamental computation in control sys-

tems design is the solution of continuous-time and
discrete-time algebraic Riccati equations (CAREs and
DAREs). CAREs and DAREs arise in many applica-
tions, such as, stabilization and linear-quadratic regula-
tor problems, Kalman filtering, LQG—linear-quadratic
Gaussian (H2-) optimal control problems, computation
of (sub)optimalH∞ controllers, model reduction tech-
niques based on stochastic, positive or bounded real
LQG balancing, factorization procedures for transfer
functions. Usually, thestabilizing solutionis required,
which can be used to stabilize the closed-loop sys-
tem matrix or matrix pencil. A very important class
of CARE/DARE solvers makes use of stable invari-
ant or deflating subspaces of some structured, Hamil-
tonian or symplectic matrices or pencils, assuming cer-
tain nonsingularity and eigenvalue dichotomy proper-
ties [Laub, 1979]. The explicit need of matrix in-
version in the CARE/DARE solvers (for instance, of
the system matrix, for symplectic DARE solvers) can
ruin the accuracy of the results, if the matrix to be
inverted is ill-conditioned. Better results can be ob-
tained using stable deflating subspaces of extended ma-
trix pencils, with no inversion involved [Bender and
Laub, 1987a; Bender and Laub, 1987b; Lancaster and
Rodman, 1995; Mehrmann, 1991; Van Dooren, 1981].
The solvers currently available, e.g., inMATLAB©R

Control System Toolbox [MATLAB, 2010], and
SLICOT [Benner et al., 1999; Benner et al., 2010],

are using the standard QZ algorithm for reordering
the eigenvalues, to determine the stable deflating sub-
spaces. The special structure of the matrix pen-
cils involved is not exploited, but it should be ex-
ploited in order to improve the numerical properties
of the Riccati solvers. Recently, structure-exploiting
techniques have been investigated for solving skew-
Hamiltonian/Hamiltonian eigenproblems, see, e.g.,
[Benner et al., 2002; Benner et al., 2007], and the ref-
erences therein. These techniques can be employed
for CARE solvers. For solving DAREs, it is possi-
ble to preprocess the pencils by an extended Cayley
transformation, which only involves matrix additions
and subtractions [Xu, 2006], to obtain equivalent skew-
Hamiltonian/Hamiltonian pencils.
In the sequel, the pencilsλM −N will be represented

in the numerically better formαM − βN , with λ =
α/β (possibly∞).

2 Computation of Eigenvalues and Stable
Deflating Subspaces of complex skew-
Hamiltonian/Hamiltonian matrix pencils

Let αS − βH be a skew-Hamiltonian/Hamiltonian
pencil, i.e.,(SJ )H = −SJ , (HJ )H = HJ . By
definition, these pencils have even size,2n. Therefore,
odd-order pencils, which can appear, e.g., in optimal
control, should be extended to an even size, to apply the
techniques summarized below. Moreover, sometimes,
permutation and scaling are needed to transform the
original pencils to the skew-Hamiltonian/Hamiltonian
form.
For some problems, including linear-quadratic opti-

mization applications,S can be given in a factored
form, the so-calledskew-Hamiltonian Cholesky factor-
ization, defined byS = JZHJ TZ. Such a matrixS
is said to beJ -semidefinite. For instance, for a block-
diagonal matrixS = diag(E,EH), a factorZ can be
written asZ = diag(In, EH).
Some properties of skew-Hamiltonian/Hamiltonian

pencils are proven, e.g., in [Benner et al., 2002]. Let
αS − βH be a skew-Hamiltonian/Hamiltonian pen-
cil with nonsingularJ -semidefinite skew-Hamiltonian
part S = JZHJ TZ. Under certain conditions
(see [Benner et al., 2002]), then there are a unitary ma-
trix Q and a unitary symplectic matrixU , such that

UHZQ =
[

Z11 Z12

0 Z22

]
,

JQHJ THQ =
[

H11 H12

0 −HH
11

]
, (3)

whereZ11, ZT
22, andH11 aren × n upper triangular.

Similarly, if ıH is also nonsingularJ -semidefinite, i.e.,
ıH = JWHJ TW, then there are a unitary matrixQ
and unitary symplectic matricesU andV, such that

UHZQ =
[

Z11 Z12

0 Z22

]
, VHWQ =

[
W11 W12

0 W22

]
,



whereZ11, ZT
22, W11, andWT

22 aren × n upper trian-
gular.
Another property refers toreal skew-Hamiltonian/

skew-Hamiltonianpencils, in factored form. Let
αS − βN be a real regular skew-Hamiltonian/skew-
Hamiltonian pencil withS = JZTJ TZ. Then, there
are a real orthogonal matrixQ and a real orthogonal
symplectic matrixU , such that

UTZQ =
[

Z11 Z12

0 Z22

]
,

JQTJ TNQ =
[

N11 N12

0 NT
11

]
, (4)

where Z11, ZT
22 are upper triangular,N11 is upper

quasi-triangular, andN12 = −NT
12. Moreover, the

Schur form

JQTJ T (αS − βN )Q =

α

[
ZT

22Z11 ZT
22Z12 − ZT

12Z22

0 ZT
11Z22

]
− β

[
N11 N12

0 NT
11

]

is aJ -congruent skew-Hamiltonian/skew-Hamiltonian
matrix pencil. Consequently, the spectra of such pen-
cils have eigenvalues with multiplicity at least 2.
An algorithm for computing the eigenvalues and

bases for the stable deflating subspace (correspond-
ing to the eigenvalues with strictly negative real part),
and for a companion subspace, of a complex skew-
Hamiltonian/Hamiltonian pencil is summarized below,
based on Algorithm 1 in [Benner et al., 2002]:
Algorithm 1. Let αS − βH be a complex regu-

lar skew-Hamiltonian/Hamiltonian pencil withS =
JZHJ TZ.
1. Let T = ıH, which is skew-Hamiltonian. Define

the “embedded” matricesBZ = diag(Z, Z̄), BT =
diag(T , T̄ ), and the real matrices of order4n

B̂Z = (YP)HBZ(YP) , B̂T = (YP)HBT (YP) ,

where

Y =
√

2
2

[
I2n ıI2n

I2n −ıI2n

]
, P =




In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In


 .

Compute the corresponding decompositions (4), for
the real skew-Hamiltonian/skew-Hamiltonian pencil
αJ2B̂T

ZJ T
2 B̂Z − βB̂T (whereJ2 is the matrixJ with

blocks of order2n), using a real orthogonal matrixQ
and a real orthogonal symplectic matrixU ,

B̃Z = UT B̂ZQ =
[Z11 Z12

0 Z22

]
,

B̃T = JQTJ T B̂TQ =
[T11 T12

0 T T
11

]
,

whereZ11, ZT
22, are upper triangular,T11 is upper

quasi-triangular, andT12 = −T T
12 . Transform the2× 2

real diagonal blocks into1× 1 complex blocks.
2. Find a unitary matrixQ̂ and a unitary symplectic

matrix Û , such that

B̌Z := ŨH B̃ZQ̃ =

[
Z̃11 Z̃12

0 Z̃22

]
,

B̌H := J Q̃HJ T
(− ıB̃T

)Q̃ =
[H11 H12

0 −HH
11

]
,

whereZ̃11, Z̃T
22, andH11 are upper triangular, such that

Λ
(B̌H ,J B̌H

Z J T B̌Z
)

is contained in the spectrum of

the leading2p× 2p principal subpencil ofαZ̃H
22Z̃11 −

βH11. The notationΛ (N, M) denotes the stable finite
spectrum of the pencilαM − βN , andp is the number
of eigenvalues inΛ (H,S).
3. Set

V =
[
I2n 0

]YPQQ̃
[

I2p

0

]
,

U =
[
I2n 0

]YPUŨ
[

I2p

0

]
,

and compute an orthonormal basis of the stable deflat-
ing subspace, and an orthonormal basis of the compan-
ion subspaceas,P−U , [Benner et al., 2002], as a basis of
rangeV and rangeU , respectively.
Step 1 of the algorithm uses an RQ decomposition

with changed elimination order (compared to the clas-
sical RQ decomposition), to triangularizêBZ in the
form stated forB̃Z . (Actually, both QR and RQ de-
compositions are used.) Skew-symmetric updates of
the off-diagonal blocks of order2n of B̂T are made,
and the (1,1) diagonal block is also updated for the
transformations applied to thêBZ part. Then, the trans-
formed B̂T part is reduced to the skew-Hamiltonian
Hessenberg form, using real plane rotations (i.e., the
(1,1) block is upper Hessenberg, and the (2,1) block is
zero), andB̃Z is updated while maintaining its form.
Finally, the real periodic QZ algorithm [Bojanczyk
et al., 1992; Sreedhar and Van Dooren, 1994], applied
to the pencilαZT

22Z11 − βT11 is used, to reduce the
obtained upper Hessenberg matrixT11 to upper quasi-
triangular form, while preserving the other factors up-
per triangular. The2 × 2 diagonal blocks are trans-
formed to equivalent complex1 × 1 blocks using the
complex periodic QZ algorithm for2× 2 pencils.
Note that if only the eigenvalues are desired, then they

are returned by the periodic QZ algorithm called in
Step 1 of the algorithm, and the transformations should
not be accumulated.
Step 2 needs to reorder the eigenvalues of the pen-

cil. A special strategy is used. First, the eigenval-
ues in the subpencilαZH

22Z11 − βT11 are reordered,
in two substeps: reorder the eigenvalues with negative



real parts to the top; then, reorder the eigenvalues with
positive real parts to the bottom. Second, the remain-
ing eigenvalues with negative real parts are reordered,
also in two substeps: the eigenvalue of the last diag-
onal block in the current subpencilαZ̃H

22Z̃11 − βH11

is interchanged with the eigenvalue of the last diagonal
block in the current pencilαJ2B̌H

Z J T
2 B̌Z − βB̌H; fi-

nally, the eigenvalue in the2n-th place is moved to the
(p + 1)-th place, wherep denotes the current number
of eigenvalues with negative real parts in the subpencil
αZ̃H

22Z̃11 − βH11. All these exchanges essentially in-
volve 2 × 2 pencils and are performed using complex
plane rotations.
The structure can be exploited in the all steps of the

algorithm. For instance,H12 = HT
12, and so, only

its upper triangular part should be computed. Also, as
mentioned, skew-symmetric updates are used, when-
ever possible.
A similar algorithm can be written for an unfac-

tored matrix S, based on Algorithm 2 in [Benner
et al., 2002], and the called algorithms. Extended em-
bedded matriceŝBS (instead ofB̂Z), andB̂T are used.
Both have the same structure.
Below is a summary about the related software:

• Fortran andMATLAB software for eigenvalues and
deflating subspaces have just been developed.
• Both real and complex cases are considered.
• Factored or unfactored versions are covered.
• Auxiliary routines for problems (of even order) with
(quasi-)triangular structure are included.
• Optimized kernels for problems of order 2, 3, or 4,
called by the general solvers, are available.

3 Numerical Results
This section presents some preliminary numerical re-
sults, based on Fortran implementation of the algo-
rithms and correspondingMATLAB MEX-files. These
results have been obtained on a portable Intel Dual
Core computer at 2 GHz, with 2 GB RAM, and rela-
tive machine precisionε ≈ 1.11 × 10−16, using Win-
dows XP (Service Pack 2) operating system, Intel Vi-
sual Fortran 11.1 compiler, andMATLAB 7.11.0.584
(R2010b).

3.1 Computation of Eigenvalues
Many numerical tests have been performed, to assess

the correct behavior of the developed solvers.
Several small skew-Hamiltonian/Hamiltonian exam-

ples are used below to illustrate the limitations of
the standard, unstructured approach. The generalized
eigenvalues computed by a structure-preserving algo-
rithm and the standard QZ algorithm, optimally imple-
mented in theMATLAB functioneig , have been com-
pared with those delivered by symbolic calculations,
using the followingMATLAB commands1

1Unfortunately, there is noMATLAB generalized symbolic eigen-
solver, so themldivide (or mrdivide ) operator has been used,
but the condition numbers of the tried skew-Hamiltonian matrices

Ss = sym( S ); Hs = sym( H );
evs = double( eig( Ss \ Hs ) );

Based on the symmetry properties of the eigenvalues
of complex (H,S) pencils, for every eigenvalueλ,
−λ̄ is also an eigenvalue. (This does not mean that
a purely imaginary eigenvalue is necessarily multiple,
but that−λ̄ = λ in this case.) Consequently, a qual-
ity measure which has been used was the (relative)de-
viation from symmetryof the eigenvalues, defined as
‖(λ − P (λ,−λ̄))‖2, whereP (v, w) is a permutation
which makes the vectorw be as close as possible to the
vectorv. (The relative deviationis obtained by divid-
ing the deviation to the norm ofλ.) Let

S =
[

2− 3ı 3ı
−5ı 2 + 3ı

]
, H =

[−19− 3ı −4
−1 19− 3ı

]
.

The structured algorithm found the eigenvalues

−2.526134862339483ı, 74.02613486233942ı ,

theMATLAB functioneig returned

−2.526134862339483ı ,

3.22768506974576 · 10−13 + 74.02613486233955ı ,

and the symbolicMATLAB functioneig computed

−2.526134862339484ı, 74.02613486233949ı .

The relative error norms of the first two solvers, com-
pared to the symbolic solver, have the values9.59 ·
10−16 and4.42 · 10−15, respectively. The first value is
about 5 times smaller than the second one. The eigen-
values are plotted in Fig. 1.
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Figure 1. Eigenvalue scatter plot for an example of order 2.
The smallest eigenvalue computed byeig coincides to that
computed by the structured solver.

Several similar examples have been built. The stan-
dard solver gives possible large errors in the real parts
for problems with purely imaginary eigenvalues. Fig. 2
shows another eigenvalue comparison for an example
of order 4.

were small.
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Figure 2. Eigenvalue scatter plot for an example of order 4.
Three eigenvalue computed byeig are very close to those
computed by the structured solver, but one eigenvalue has a
large real part.

In a set of 60 test problems (with 20 problems for each
valuem := n/2 ∈ {1, 2, 3}), the sum of the relative
errors for the structured and standard solver (compared
to the symbolic solver) had the values1.19 · 10−13 and
1.67 ·10−13, respectively. The important fact is that the
symmetry of the spectrum is ensured by the structured
solver.
It was not possible to symbolically solve problems

with m ≥ 5. For larger matrices, the differences be-
tween the results produced by the structured solver and
by eig were more pronounced.
The deviation from symmetry is usually nonzero, but

small, even for structured solvers, due to the complex
eigenvalue calculation. For one example, the deviation
was 6.28 · 10−15, for the structured solver, but1.4 ·
10−10, for eig .
In a set of 1200 test problems (with 20 problems

for each valuem ∈ {1, . . . , 30}, and matrices gener-
ated randomly using both uniform and normal distrib-
utions), the maximum relative deviation was3 · 10−16,
for the structured solver, and5.4 · 10−11, for MATLAB

eig .

3.2 Computation of Right Deflating Subspaces
Thousands of tests have been performed with ran-

dom matrices for computing the eigenvalues and right
deflating subspaces of skew-Hamiltonian/Hamiltonian
matrix pencils. The results computed by the structured
solvers have been in good agreement to those obtained
by the standard, unstructured solver,eig . As men-
tioned before, the structured solvers return better com-
puted eigenvalues, satisfying the symmetry property.
This might come with a greater cost, due to the in-
creased complexity of the implementations, compared
to the standard solver. Note that some initial perfor-
mance results for eigenvalue computations using the
unfactored version of the solver, in comparison with
eig , have been reported in [Sima, 2010]. Unfortu-
nately, the speed-up values were wrong. Actually,eig
was about two to over six fold faster than the structured

solver. The current implementation is significanly im-
proved, being over 2.5 times faster than the previous
one, but it still does not outperformeig for pencils
of order larger than, say, 400. It is planned to investi-
gate the bottlenecks and further speed-up the structured
solvers, e.g., by a better use of block algorithms. Note
thateig recorded many improvements during its long
life.
Fig. 3 presents the CPU times needed by the structured

and unstructured solvers for computing the eigenvalues
in the unfactored case. Fig. 4 presents the ratios of the
CPU times needed by the structured and unstructured
solvers for computing the eigenvalues. The structured
solver is about 20% faster thaneig for pencils of order
less than 300.
Similarly, Fig. 5 and Fig. 6 show the same parameters

when computing both the eigenvalues and a basis for
the stable deflating subspace. The structured solver is
about 10% faster thaneig for orders less than 300.
The timing values are mean values: five problems of

each order were solved. The list of problem orders has
an increment 10. The factored solver needed about
twice as much CPU time compared to the unfactored
solver, but can offer better accuracy, by avoiding the
computation ofJZHJ TZ. The CPU ratios behaved
similarly on a computer at 3 GHz, with 1 GB RAM, but
the CPU times were over 2.5 fold larger for all solvers.
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Figure 3. CPU times needed by the structured and unstruc-
tured solvers for computing the eigenvalues.

4 Conclusion
Main issues related to the structure-preserving algo-

rithms for computing the eigenvalues and stable deflat-
ing subspaces of complex skew-Hamiltonian/Hamil-
tonian matrix pencils, with applications in control sys-
tems analysis and design, are presented. The tech-
niques use specialized algorithms to exploit the struc-
ture of such matrix pencils. The structured solvers en-
sure the symmetry of the spectra, while the standard
algorithm can deliver eigenvalues with large deviation
from symmetry, even for problems of order 2. The cur-
rent implementations are slower than the standard, un-
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Figure 4. Ratios of the CPU times needed by the structured
and unstructured solvers for computing the eigenvalues.
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Figure 5. CPU times needed by the structured and unstruc-
tured solvers for computing the eigenvalues and the stable
deflating subspace.
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Figure 6. Ratios of the CPU times needed by the structured
and unstructured solvers for computing the eigenvalues and
the stable deflating subspace.

structured algorithm for pencils with orders larger than
few hundreds, especially when computing the deflating
subspaces. Improved, faster solvers are investigated.
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