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All-optical noninvasive control of a multisection semiconductor laser by means of time-delayed
feedback from an external Fabry-Perot cavity is realized experimentally. A theoretical analysis, in both
a generic model as well as a device-specific simulation, points out the role of the optical phase. Using
phase-dependent feedback we demonstrate stabilization of the continuous-wave laser output and non-
invasive suppression of intensity pulsations.
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Unstable states play an important role in complex sys-
tems. They frequently interconnect attractors in phase
space and thus form the skeleton of the nonlinear dynam-
ics. Instabilities are born in various types of bifurcations.
Prominent examples are saddles in saddle-node bifurca-
tions or unstable periodic orbits in the period-doubling
route to chaos. Bifurcation analysis, well developed for
ordinary and delay-differential equations, can in general
uncover also the unstable objects of the phase portrait. The
experimental study of unstable states, however, is difficult,
because they are visited at most for short times only.
Noninvasive control can overcome this difficulty: It stabil-
izes unstable states but does not change the states them-
selves, since the control forces act only if the system
deviates from the state to be stabilized. Among the various
methods, time-delayed feedback control (TDFC) plays an
outstanding role [1], as detailed knowledge of the target
state is not required here. The control signal is built from
the difference s�t� � s�t� �� between the present and an
earlier value of an appropriate system variable s. TDFC
becomes noninvasive for orbits with period � or steady
states [2], because s�t� � s�t� ��. Involving no numeri-
cally expensive computations, it is capable of controlling
systems with very fast dynamics still in real-time mode.

TDFC has been applied successfully to the stabilization
of periodic orbits in a variety of systems in physics, chem-
istry, biology, and medicine [3], but much less is known
about its action upon steady states. From a practical point
of view, it is often desirable to suppress self-sustained
oscillations, e.g., in order to stabilize continuous-wave
(cw) operation of lasers [4].

In the present Letter, TDFC of unstable steady states in a
semiconductor laser device is demonstrated in theory and
experiment. Recently, multisection lasers with their com-
plex dynamical phenomena have opened up new ways in
high-speed optical information processing [5]. Their pico-
second response times are too short even for a fast elec-
tronic realization of TDFC. All-optical control as
described in this Letter is thus the only applicable method
so far. The scheme of the setup is shown in Fig. 1. An

integrated tandem laser (ITL) [5] is deliberately driven
through a Hopf bifurcation into a self-pulsating regime of
operation. Suppression of the pulsations and noninvasive
stabilization of the steady state is achieved by direct optical
feedback from a properly designed external Fabry-Perot
(FP) etalon. Although proposed about a decade ago [6,7]
and despite of some numerical studies [7,8], such a non-
invasive all-optical control approach has not yet been
implemented experimentally. A novel aspect of our analy-
sis is that it addresses the role of the optical phase as a
specific feature of the FP control configuration.

Optical fields emitted by lasers vary generally as
RefE�t�e�i!0tg where the exponential factor oscillates by
orders of magnitude faster than the slow amplitude E�t�.
The field fed back from the FP has the same shape, and for
feedback gain K, its amplitude reads as

 Eb�t� � �Kei’
X1
n�0

Rnein��E�tn� � ei�E�tn�1��; (1)

with tn � t� �l � n�. The delay originates from a single
round-trip between laser and FP, characterized by the
latency time �l, and n round trips of time � within the FP
of mirror reflectivity R. Two optical phase shifts ’ � !0�l
and � � !0� are associated with these delay times.
Noninvasive control requires optical target states with
E�t� � ei�E�t� �� [9]. For steady states E�t� � E0 this
means ei� � 1; i.e., the FP must be tuned into resonance.

 

FIG. 1. Scheme of the ITL device with optical feedback from
an external FP etalon. Two distributed feedback (DFB) lasers are
connected via a passive waveguide section P. Amplitude K and
phase ’ of the feedback from the FP are controlled by a variable
neutral density filter and a piezo positioning, respectively. ESA:
electrical spectrum analyzer. IR diode: power measurement.
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While the FP phase is thus fixed, the latency is still arbi-
trary and makes the feedback phase-sensitive.
Conventional TDFC corresponds to ’ � 0. However, in
the FP geometry, ’ is tunable by subwavelength changes
of the ITL-FP separation and thus represents an additional
free parameter which all-optical TDFC can profit from. In
what follows, this is theoretically demonstrated first by a
general treatment relying on a two-variable center-
manifold model [2] and subsequently in a device-specific
numerical simulation resolving fully the spatiotemporal
dynamics in the ITL.

We consider a nonlinear system closely above a Hopf
bifurcation, where it has an unstable fixed point (focus)
whose stability is governed by the complex eigenvalues
�� i! (with � > 0). For simplicity, we restrict ourself to a
single FP round trip (n � 0) and ignore �l in the slow
amplitude dynamics. Linearizing around the fixed point
provides a generic equation for the center-manifold coor-
dinates x, y, corresponding to the complex field through
E � E0 � x� iy,
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where x� � x�t� ��, y� � y�t� ��. This equation gener-
alizes the model of Ref. [2] to phase-sensitive feedback and
shows that such feedback creates nondiagonal coupling
terms [10]. The characteristic equation for the complex
eigenvalues � reads as

 �� Ke�i’�1� e���� � �� i!: (3)

Note that this characteristic equation can be solved analyti-

cally using the Lambert function, which is defined as the
inverse function of g�z� � zez for complex z.

Figure 2 shows the domain of control, i.e., Re���< 0,
dependent on the parameters ’, K, and �. The unit of time
is the intrinsic period T0 � 2�=! of the unstable focus and
�T0 � 0:2 is chosen in all plots. Panels (a) and (b) repre-
sent the �’;K� plane for fixed values of the time delay
�=T0 � 0:5 and 0.9, respectively. Note that � � T0=2
yields a symmetric domain of control with respect to ’ �
0, which is the case of diagonal coupling [2]. For values
other than this optimal time delay, the domain of control is
distorted and shrinks. In the situation shown in Fig. 2(b),
control can no longer be achieved for ’ � 0, but only for
positive phase ’> 0. Panels (c) and (d) show the domain
of control in the �’; �� plane for fixed feedback gain
KT0 � 1 and 2, respectively. It consists of isolated islands
with a horizontal extension that becomes maximum and
symmetric with respect to ’ � 0 at delays of � � �n�
1=2�T0�n � 0; 1; 2; . . .�. No control is possible for integer
�=T0. For a range of � values in between, stabilization can
be achieved by appropriately chosen ’. When crossing the
islands at fixed ’, resonance-type behavior of the damping
rate �Re��� occurs. With increasing n, the size of the
islands decreases so that they eventually disappear at some
critical value determined by the feedback strength K.

The ITL is capable of various Hopf bifurcations; how-
ever, the complex spatiotemporal dynamics of the device
might induce significant modifications from the generic
scenario represented above. We have therefore numerically
simulated the ITL-FP configuration on a full device level.
Such treatment is also required in order to uncover the
specific conditions that have to be met in the experiment.
The field-carrier dynamics of the three-section device,
combining two distributed feedback (DFB) lasers and a
passive waveguide, is treated in the framework of the
Maxwell-Bloch equations. By adiabatically eliminating
the polarization and including the coupling �k between
counterpropagating waves in the DFB sections, the slowly
varying optical amplitudes E��z; t� and the mean electron-
hole pair concentration nk�t� of each section k � DFB1, P,
DFB2 obey the following traveling-wave equations [5]:
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The linear gain gk � g0k�nk � n
tr
k �, the complex waveguide

parameter
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and the mean photon density Sk �
R
k dz�jE

�j2 � jE�j2�
are quantities that change in time. All other parameters are
constants and their values are chosen according to the
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FIG. 2 (color online). Domain of control in dependence on ’,
K, and � with normalization in units of T0 � 2�=!. The largest
real part of the complex eigenvalues � is shown in color code.
(a),(b) Domain of control in the �’;K� plane for fixed delay � �
T0=2 and 0:9T0, respectively. (c),(d) Domain of control in the
�’; �� plane for fixed feedback gain K � 1=T0 and 2=T0, re-
spectively. Fixed parameter: � � 0:2=T0.
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device studied experimentally [11]. Continuity of the opti-
cal amplitudes at the section interfaces and the antireflec-
tion coated end facets is assumed. The feedback (1) from
the FP is implemented as a time-delayed boundary condi-
tion by setting E��t� � Eb�t� and E�tn� � E��tn�, where
E��t� are the amplitudes at the facet opposing the FP.

The bifurcation parameter used in the present context to
switch the device output from cw operation to a self-
pulsation mode is the internal optical phase shift ’P �
2LP�P in the passive section. It can be tuned via the static
wave number. Figure 3(a) shows the minimum and maxi-
mum value of the emitted power taken from transients
calculated over a time interval of 8 ns. Equal values
mean cw output. The solitary ITL undergoes the relevant
Hopf bifurcation at ’P � 4:277. Relaxation oscillations
(ROs) with a period of T0 
 89 ps become undamped
here. When a resonant FP with proper feedback parameters
is attached, cw operation remains stable beyond this point
down to ’P 
 3:765. The feedback signal practically dis-
appears in the whole stabilization range, confirming the
noninvasive character of the control.

In Fig. 3(b), the transient dynamics after switching the
control on (left part) and off (right part) is depicted. In the
first case, the device starts from a free-running stable self-
pulsation. After attaching the FP at t � 0, the pulsation

amplitude starts rapidly to decline. The control signal
returned from the FP is initially about 1% of the 15 mW
device output, but drops dramatically down to less than
1 pW within 8 ns. After removing the control again, the
pulsation recovers. The initial small-amplitude oscillations
allow for the determination of the complex eigenvalue ��
i2�f of the unstable focus. The domain of control obtained
by repeating the calculations for a series of different feed-
back phases ’ and feedback strengths K is plotted in
Fig. 3(c). It confirms qualitatively the predictions of the
generic model for the specific case of the ITL: Stabilization
at lowest K appears around ’ � 0, and for larger K,
stabilization is only possible in a certain phase range.
Note that K is given in different units in Figs. 2(a) and
3(c). At too high K, the stabilization is again lost. This loss
is much more abrupt than in the generic model, because
additional states of the much more complex phase portrait
of the ITL come into play.

The ITL chip used in the experiment has a design as in
Ref. [5] except for a larger LP 
 500 �m. The collimated
emission from one of its facets is sent under normal inci-
dence on a quartz-glass etalon [12] and the reflected light is
fed back to the ITL along the same path (Fig. 1). The
resonance condition exp�i!0�� � 1 is adjusted by tuning
the lasing mode via device temperature. A variable neutral
density filter is used to define the feedback amplitude K.
The latency time �l is fixed with 5 ps accuracy by position-
ing the whole FP mounting. Fine-tuning of the FP position

 

FIG. 3. Control characteristics derived from the device simu-
lation. (a) Maximum and minimum of the laser emission vs
internal phase shift ’P. Solid line, solitary ITL; dashed lines,
ITL with lossless FP (’ � 0, K � 0:1, ei� � 1, �l � � �
44:6 ps, mirror reflectivity 70%). Dotted line: time averaged
control signal Eb. (b) Output transients after switching control
on (left) and off (right); lower left is the control signal.
(c) Domain of control in the �’;K� plane. (d) Transmitted (solid
line) and reflected (dashed line) power of the FP for K � 0:04.
Panels (b)–(d) belong to ’P � 4:15.

 

FIG. 4. All-optical TDFC of unstable steady states of an ITL.
(a),(b) Height and width (��), respectively, of the RO peak in
the power spectra versus phase current IP. Open triangles,
solitary ITL; solid circles, with control by the FP. Inset: power
spectra at 58.4 mA without (gray) and with (black) control.
Diamonds in panel (b): positions of the Hopf bifurcations
without (gray) and with (black) FP. (c),(d) Variation of RO
peak height and power transmitted through the FP, respectively,
versus feedback phase, adjusted here by the piezo voltage. In all
measurements, � 
 38:5 ps and �l 
 120 ps.
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by a piezo actor with subwavelength precision in steps of
some 10 nm provides control of the feedback phase ’ in a
range of several 2�. The mean power transmitted through
the FP etalon is detected by an infrared photodiode and
provides information on the control signal. The emission
from the opposite laser facet is coupled into a fiber, am-
plified, and analyzed by a 40 GHz electrical spectrum
analyzer after optoelectronic conversion by a 50 GHz
photodiode.

The Hopf bifurcation considered in the device simula-
tion is experimentally identified from the height and width
of the RO peak in the power spectrum. The internal optical
phase shift ’P is changed through the injection current IP
on the passive section. The waveguide has a larger band
gap than the DFB sections. Injection modifies its refractive
index by free-carrier transitions and, thereby, �P.
Panels (a) and (b) of Fig. 4 display prototypical data. A
sudden increase of the peak height at critical phase current
IP along with a preceding drop of the width is clearly
indicative of the bifurcation [13]. Indeed, when adding
the properly adjusted FP cavity, the bifurcation point is
distinctly shifted to higher phase currents relative to the
solitary ITL. As a result of inevitable external and internal
noise, there is still a residual RO feature present under
control, but its height is suppressed by orders of magnitude
[inset of Fig. 4(a)].

Variation of the feedback parameters yields the tenden-
cies expected from the simulations. Control is only pos-
sible in a limited range of K. While the generic model
assumes �l � 0, the minimum latency time of the experi-
mental setup is 120 ps and thus comparable with the period
of the ROs. In that case, extra amplitude dynamics is
triggered. By increasing �l, the parameter range in which
control can be achieved shrinks [2,14]. Therefore, in all
measurements presented in Fig. 4, the lowest value of �l is
adjusted. Panel (c) displays the variation of the RO peak
height as a function of the ITL-FP separation in the range
of several optical periods. Cyclic behavior directly dem-
onstrates the genuine role of the feedback phase ’ in all-
optical TDFC. The control domain expands over about
30%–40% of a period, in reasonable agreement with the
computations. The signal transmitted through the FP is
complementary to the control signal fed back into the
ITL. The respective data [Fig. 4(d)] follow very closely
the theoretical curve in Fig. 3(d). We estimate that the
control signal is at least 3 orders of magnitude below the
level of the laser emission. Therefore, the control indeed
has a noninvasive character.

In conclusion, we have shown that unstable steady states
of a semiconductor laser can be noninvasively stabilized by
all-optical TDFC. This system is paradigmatic for a large
class of nonlinear systems in physics, technology, and
beyond. It can be readily manipulated experimentally on
small length and fast time scales. Our study demonstrates
the crucial importance of the proper choice of phase of the

feedback signal, i.e., of the coupling matrix, which repre-
sents a generic feature of all-optical TDFC.
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