
CYBERNETICS AND PHYSICS, VOL. 8, NO. 4, 2019, 267–276

LOCAL SYNCHRONIZATION OF CYCLIC COUPLED
HYPERCHAOTIC SYSTEMS AND ITS CIRCUIT

IMPLEMENTATION

K. S. Ojo
Department of Physics
University of Lagos

Akoka, Lagos
Nigeria

kaystephe@yahoo.com

A. O. Adelakun
Department of Physics

Federal University of Technology
Akure

Nigeria

A. I. Egunjobi
Department of Physics

Moshood Abiola Polytechnic
Abeokuta
Nigeria

E. I. Udoh
Department of Physics
University of Lagos

Akoka, Lagos
Nigeria

Article history:
Received 22.07.2019, Accepted 22.09.2019

Abstract
Most of the available research works on cyclic cou-

pling of chaotic systems focussed on either analytical
and numerical results or numerical and experimental re-
sults. This research paper, investigates synchronization
of two cyclic coupled hyperchaotic systems using ana-
lytical, numerical and experimental techniques. Based
on Routh-Hurwitz criterion, analytical condition for sta-
ble synchronization of the hyperchaotic systems are de-
rived. The results obtained from MultiSIM and analog
circuit confirm the effectiveness and feasibility of the an-
alytical results. It is worthy of note that the cyclic cou-
pling synchronization scheme gives several synchroniza-
tion options, save synchronization time and cost. More-
over, cyclic coupling synchronization scheme has poten-
tial applications in biological information transmission
networks.
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1 Introduction
Synchronization phenomenon is one of the most

exciting behaviour of coupled nonlinear dynamical
systems due to its significant and relevant applications
in physical, chemical, biological and complex systems
in general [Strogatz, 1994; Alligood et al., 1997; Njah
and Ojo, 2010; Ma et al., 2012; Okpabi et al., 2017;

Tong et al., 2016]. Several types of synchronization
[Rosenblum et al., 1997; Pecora and Carroll, 1990; Ojo
et al., 2016a; Ojo et al., 2011; Ojo et al., 2013b; Gasri
et al., 2018], methods of synchronization [Yang, 2012;
Njah, 2011; Lu et al., 2013; Ojo et al., 2013a; Adegoke
et al., 2013; Yang, 2012], and schemes [Ouannas, 2014;
Zhang and Deng, 2014; Dongmo et al., 2018; Ojo
et al., 2016b; Yu et al., 2013; Adelakun et al., 2017]
have been developed in order to obtain most efficient
applications of synchronization to natural and artificial
systems. The search for the best coupling techniques to
achieve excellent synchronization efficiency has led to
the discovery of different coupling techniques such as
unidirectional coupling [Adelakun et al., 2014; Rulkov
et al., 1995; Ojo et al., 2013c], bidirectional coupling
[Kumar et al., 2016; Khan and Poria, 2012], cross
coupling [Zhang and Deng, 2014; Mengfei et al., 2015],
cyclic coupling [Bera et al., 2016; Olusola et al., 2013;
Egunjobi et al., 2018] and others [Liu et al., 2011; Iqbal
et al., 2018; Belykh et al., 2005; Kandel et al., 2000].
The types of coupling technique and topology determine
the level of stability or instability of synchronization of
coupled nonlinear systems.

Having established that several coupling techniques
are available for synchronization of nonlinear systems,
our particular interest is on analytical, numerical and
experimental implementation of synchronization via
cyclic coupling technique. The choice of cycling
coupling for synchronization is due to the following
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reasons: (i) many synchronization choices (topologies)
are available between each pair of variables depending
on the dimension of the systems (ii) the available
choices (topologies) can be optimized based on your
particular objective of synchronization (iii) synchro-
nization cost can be saved based on available choices
(topologies)(iv) synchronization time can also be saved
based on available choices (topologies) (v) the pair of
variables which cannot be synchronization can easily be
detected via the analytical criterion. The details of the
available choices (topologies) is given in section 3 of
this paper.

Cyclic coupled synchronization is a process whereby
one system transmits an information to another system
using one pair of its variables and then decode the
transmitted information via a different pair of variables
[Olusola et al., 2013]. It is worthy of note that the cyclic
coupling configuration gives a better synchronization
results where the diffusive bidirectional coupling con-
figuration failed [Olusola et al., 2013]. Despite several
advantages of cyclic coupling synchronization, not
many research works have reported in this direction.
[Bera et al., 2016; Olusola et al., 2013; Egunjobi et al.,
2018; Adelakun et al., 2018].

Investigation on synchronization of cyclic coupled
chaotic systems via analytical and numerical simula-
tions was carried out in [Olusola et al., 2013]. It was
discovered in the paper that cyclic coupling technique
achieves stable synchronization in some chaotic systems
where bidirectional mutual coupling technique failed.
Also, synchronization of cyclic coupled Sprott systems
was investigated and implemented using only electronic
experiment [Egunjobi et al., 2018]. To best of our
knowledge, synchronization of hyperchaotic systems
via cyclic coupling has not been reported. Also, there
is no single paper on synchronization of cyclic coupled
chaotic systems that combines analytical, numerical
and experimental simulations results. Motivated by the
above discussion, this research work provides analytical,
numerical and experimental evidence of synchronization
of cyclic coupled hyperchaotic systems. The choice
of hyperchatic system is as result of high complex
dynamical behaviour and its attractive application in
chaos based secure communication.

This paper is organized as follows. Section 2, pro-
vides description of analog circuit for the hyperchaotic
system. Section 3, presents the theory of cyclic cou-
pling. Section 4 deals with derivation of synchronization
criteria for cyclic coupled hyperchaotic systems. Section
5 deals with results and discussion. Finally, section 6
concludes the paper.

2 Description of analog circuit for the hyperchaotic
system

The four-dimensional hyperchaotic system proposed
in this work can be expressed as:

ẋ = a(x− y)− yz + w (1)
ẏ = −by + xz

ż = −cz + dx+ xy

ẇ = −e(x+ y)

where x, y, z, w are the state variables and the values of
the constants a, b, c, d and e are respectively 0.98, 9.00,
50.00, 0.06 and 0.90. The circuit components of the hy-
perchatic system consists of adder, inverter, integrator
and multiplier as shown in Fig. 1. The differential equa-
tion from the circuit is as follows
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If time scale transformation τ = 10RCt and consider-
ing the variable compression x → 0.1x, y → 0.1y and
z → 0.1z on Eqn.2, taking R1 = R2 and R10 = R11

then we have:
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Comparing Eqn.(1) with Eqn. (3), we have: a =
10 R

R1
, b = 10 R

R5
, c = 10 R

R7
,d = 10 R

R8

e = 10 R
R10

, where R = R4 = R5 = R6 = R7 =
R10 = R11 = R12 = R13 = R17 = R18 = R19 =
R20 = R22 = R23 = 10kΩ,R1 = R2 = R14 = R16 =
10kΩ,R3 = 102kΩ, R9 = 1.1kΩ,R15 = 1.67MΩ and
R21 = 111kΩ. Capacitors (C1)− (C4) = 10nF
The analog circuit is shown in Fig. 1 and phase portraits
of the hyperchaotic attractor obtained via MultiSIM and
analog circuit are shown in Fig. 2

3 Theory of Cyclic Coupling
The cyclic coupling process involves engagement of a

pair of variable of one system with a different pair of
variable from another system in a bidirectional manner.
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Figure 1. Analog circuit of 4D hyperchaotic system with corresponding power supply

.

Figure 2. Two dimensional phase portraits of the hyperchaotic attractor for (a)x − y, (b) x − z, (c) x − w, (d) y − z, (e) y − w and (f)
z − w axes obtained through MultiSIM software (left hand side) and analog circuit (right hand side)

.

Consider cyclic coupling for two systems each of n di-
mension. The two systems are:

ẋ = Bx+ f(x) + βiHi,j(x, y)

ẏ = By + g(y) + βjHi,j(x, y) (4)

where x = (x1, x2, x3, ...xn)T , y = (y1, y2, y3, ...yn)T

are the dynamical state variables of the systems. Matrix
A represents the linear part of the system. f and g are

non linear part of the system. βi, βj(1, j = 1, 2, 3, ...n)
are coupling parameters, where βi is the coupling
parameter on the first system and βj is the coupling
parameter on the second system. Hi,j(x, y) is the output
matrix of each pair of the system that are involved in the
cyclic coupling process.

For better understanding, we consider cyclic cou-
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pling using the following pair of systems. In this
example, we shall use x1, x2, x3, ...xn for the dynamical
variables of the first system and y1, y2, y3, ...yn for
the dynamical variables of the second system. Now
we look at possible independent coupling choices for
systems of different dimensions: (a) cyclic coupling
between two systems of two dimensions each gives
only one independent coupling choice x1 → y1 and
x2 ← y2; (b) cyclic coupling between two systems of
three dimensions each gives three independent coupling
choices (i) x1 → y1 and x2 ← y2 (ii) x1 → y1 and
x3 ← y3 (iii) x2 → y2 and x3 ← y3; (c) cyclic coupling
between two systems of four dimensions each gives six
independent coupling choices (i) x1 → y1 and x2 ← y2
(ii) x1 → y1 and x3 ← y3 (iii) x1 → y1 and x4 ← y4
(iv) x2 → y2 and x3 ← y3 (v) x2 → y2 and x4 ← y4
(vi) x3 → y3 and x4 ← y4. We noticed that the number
of independent choices for cyclic coupling between two
n dimension system is nC2.For example: n = 2, gives 1
independent choice; n = 3 gives 3 independent choices;
n = 4 gives 6 independent choices; n = 5 gives 10 in-
dependent choices and n = n gives nC2 = n(n− 1)/2!
independent choices.

In order to establish the stability criteria and the
coupling strength threshold for synchronization of
cyclic coupled systems (4) is written such that e1
and e2 are are taken as deviations of the system from
synchronized state. Then the variation equation of the
deviation of e1 and e2 can be written as

ė1 = Be1 + f ′(x)e1 + βiHi,j(e2 − e1)

ė2 = Be2 + g′(y)e2 + βjHi,j(e1 − e2) (5)

whereB is a linear matrix, f ′(x) and g′(y) are non linear
functions. Using the approximation in [Khan and Poria,
2012], the time average of f ′(x) and g′(y) is denoted by
α. Now, synchronization error is defined as

e = e2 − e1 (6)

Substitution of (5) into time derivative of (6) yields

ė = (B + αI − βiHi,j − βjHi,j)e (7)

the error dynamics is stable if

P = B + αI − βiHi,j − βjHi,j < 0 (8)

otherwise, it is not stable. Therefore, P is a significant
equation in determination of the stability of cyclic cou-
pled systems. Moreover, the stability criteria for com-
plete synchronization are derived from the negative real
parts of the eigenvalues λ of P according to Routh-
Hurwitz stability criterion. Also, βi, βj and α are real
value and non-negative.

4 Derivation of Synchronization Criteria
This section deals with derivation of analytical cri-

teria for the cyclic coupled hyperchaotic system. The

cyclic coupling requires that two pairs of variables are
engaged in the coupling such that there are twelve pos-
sible topologies of cyclic coupling for two four dimen-
sional systems, out of which six are independent while
the other six topologies are symmetric for identical os-
cillators.
Now, considering 2 pairs of variables for the 4–dimen-
sional systems, 6 independent options are;
(i)x1 → x2,y1 ← y2 when H1,2 = diag(1, 1, 0, 0)
(ii)x1 → x2,z1 ← z2 when H1,3 = diag(1, 0, 1, 0)
(iii)x1 → x2,w1 ← w2 when H1,4 = diag(1, 0, 0, 1)
(iv)y1 → y2,z1 ← z2 when H2,3 = diag(0, 1, 1, 0)
(v)y1 → y2,w1 ← w2 when H2,4 = diag(0, 1, 0, 1)
(vi)z1 → z2,w1 ← w2 when H3,4 = diag(0, 0, 1, 1)
The arrows in the equations above indicate the direction
of coupling. To establish the concept of cyclic coupling
we use the stability criteria in (8)

4.1 Cyclic Coupling Between x and y Variables
When H1,2 = diag(1, 1, 0, 0), we obtain

ẋ1 = a(x1 − y1)− y1z1 + w1 (9)
ẏ1 = −by1 + x1z1 + β2(y2 − y1)

ż1 = −cz1 + dx1 + x1y1

ẇ1 = −e(x1 + y1)

ẋ2 = a(x2 − y2)− y2z2 + w2 + β1(x1 − x2)

ẏ2 = −by2 + x2z2

ż2 = −cz2 + dx2 + x2y2

ẇ2 = −e(x2 + y2)

Using the stability condition (8) in (9), we have

P =


a −a 0 1
0 −b 0 0
d 0 −c 0
−e −e 0 0

 +


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 −


β1 0 0 0
0 β2 0 0
0 0 0 0
0 0 0 0


P =


α+ a− β1 −a 0 1

0 α− b− β2 0 0
d 0 α− c 0
−e −e 0 α


The eigenvalues of matrix P are,

λ1 = α− c
λ2 = α− b− β2
λ3,4 =

−(β1−a−2α)±
√

(β1−a−2α)2−4[α2+(a−β1)α−e]
2

So that the required stability conditions are:
(1) For λ1 = α− c, we have α < c
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(2) For λ2 = α− b− β2, we have β2 > α− b
(3) If (β1+β2−a−2α)2 < 4[(α−β2)(α−β1+a)−e],
then λ3,4 are complex and stability condition is
β1 + β2 > (2α+ a)
(4) If (β1+β2−a−2α)2 > 4[(α−β2)(α−β1+a)−e],
then λ3,4 are real and stability condition is
β1 +β2 > (2α+a) and [(α−β2)(α−β1 +a)− e] > 0

Choosing a suitable value of β1 = 1.1 and β2 = 2.98,
complete synchronization was obtained.

4.2 Cyclic Coupling Between x and z Variables
When H1,3 = diag(1, 0, 1, 0), we obtain

ẋ1 = a(x1 − y1)− y1z1 + w1 (10)
ẏ1 = −by1 + x1z1

ż1 = −cz1 + dx1 + x1y1 + β2(z2 − z1)

ẇ1 = −e(x1 + y1)

ẋ2 = a(x2 − y2)− y2z2 + w2 + β1(x1 − x2)

ẏ2 = −by2 + x2z2

ż2 = −cz2 + dx2 + x2y2

ẇ2 = −e(x2 + y2)

Using the stability condition (8) in (10), we have

P =


a −a 0 1
0 −b 0 0
d 0 −c 0
−e −e 0 0

 +


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 −


β1 0 0 0
0 0 0 0
0 0 β2 0
0 0 0 0


P =


α+ a− β1 −a 0 1

0 α− b 0 0
d 0 α− c− β2 0
−e −e 0 α


The eigenvalues of matrix P are,

λ1 = α− c− β2
λ2 = α− b
λ3,4 =

−(β1−a−2α)±
√

(β1−a−2α)2−4[(α−β2)(α−β1+a)−e]
2

So that the required stability conditions are:
(1) For λ1 = α− c, we have α < c
(2) For λ2 = α− b, we have α < b
(3) If (β1−a−2α)2 < 4[α2 +(a−β1)α−e], then λ3,4
are complex and stability condition is β1 > (2α+ a)
(4) If (β1 − a − 2α)2 > 4[α2 + (a − β1)α − e], then
λ3,4 are real and stability condition is β1 > (2α + a)
and [α2 + (a− β1)α− e] > 0

Choosing a suitable value of β1 = 1.1 and β2 = 2.98,
complete synchronization was obtained.

4.3 Cyclic Coupling Between x and w Variables
When H1,4 = diag(1, 0, 0, 1), we obtain

ẋ1 = a(x1 − y1)− y1z1 + w1 (11)
ẏ1 = −by1 + x1z1

ż1 = −cz1 + dx1 + x1y1

ẇ1 = −e(x1 + y1) + β2(w2 − w1)

ẋ2 = a(x2 − y2)− y2z2 + w2 + β1(x1 − x2)

ẏ2 = −by2 + x2z2

ż2 = −cz2 + dx2 + x2y2

ẇ2 = −e(x2 + y2)

Using the stability condition (8) in (11), we have

P =


a −a 0 1
0 −b 0 0
d 0 −c 0
−e −e 0 0

 +


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 −


β1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 β2


P =


α+ a− β1 −a 0 1

0 α− b 0 0
d 0 α− c 0
−e −e 0 α− β2


The eigenvalues of matrix P are,

λ1 = α− c−
λ2 = α− b
λ3,4 =

−(β1+β2−a−2α)±
√

(β1+β2−a−2α)2−4[α2+(a−β2)α−e]
2

So that the required stability conditions are:
(1) For λ1 = α− c− β2, we have β2 < α− c
(2) For λ2 = α− b, we have α < b
(3) If (β1+β2−a−2α)2 < 4[(α−β2)(α−β1+a)−e],
then λ3,4 are complex and stability condition is
β1 > (2α+ a)
(4) If (β1+β2−a−2α)2 > 4[(α−β2)(α−β1+a)−e],
then λ3,4 are real and stability condition is β1 > (2α+a)
and [(α2 + (a− β1)α− e] > 0

Choosing a suitable value of β1 = 20 and β2 = 20,
complete synchronization was obtained.

4.4 Cyclic Coupling Between y and z Variables
When H2,3 = diag(0, 1, 1, 0), we obtain
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ẋ1 = a(x1 − y1)− y1z1 + w1 (12)
ẏ1 = −by1 + x1z1

ż1 = −cz1 + dx1 + x1y1 + β2(z2 − z1)

ẇ1 = −e(x1 + y1)

ẋ2 = a(x2 − y2)− y2z2 + w2

ẏ2 = −by2 + x2z2 + β1(y1 − y2)

ż2 = −cz2 + dx2 + x2y2

ẇ2 = −e(x2 + y2)

Using the stability condition (8) in (12), we have

P =


a −a 0 1
0 −b 0 0
d 0 −c 0
−e −e 0 0

 +


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 −


0 0 0 0
0 β1 0 0
0 0 0 0
0 0 β2 0


P =


α+ a −a 0 1

0 α− b− β1 0 0
d 0 α− c− β2 0
−e −e 0 α


The eigenvalues of matrix P are,

λ1 = α− c− β2
λ2 = α− b− β1
λ3,4 =

2α+a)±
√

(2α+a)2−4[α2+a−e]
2

So that the required stability conditions are:
(1) For λ1 = α− c− β2, we have β2 > α− c
(2) For λ2 = α− b− β1, we have β1 > α− b
(3) If (2α+a)2 < 4[(α2 +a− e], then λ3,4 are complex
and stability condition is 2α < a
(4) If (2α+ a)2 > 4[(α2 + a− e], then λ3,4 are real and
stability condition is 2α < a and [α2 + a− e] > 0

The analytical synchronization criterion obtained
shows that synchronization cannot be achieved between
y and z variables.

4.5 Cyclic Coupling Between y and w Variables
When H2,4 = diag(0, 1, 0, 1), we obtain

ẋ1 = a(x1 − y1)− y1z1 + w1 (13)
ẏ1 = −by1 + x1z1

ż1 = −cz1 + dx1 + x1y1

ẇ1 = −e(x1 + y1) + β2(w2 − w1)

ẋ2 = a(x2 − y2)− y2z2 + w2

ẏ2 = −by2 + x2z2 + β1(y1 − y2)

ż2 = −cz2 + dx2 + x2y2

ẇ2 = −e(x2 + y2)

Using the stability condition (8) in (13), we have

P =


a −a 0 1
0 −b 0 0
d 0 −c 0
−e −e 0 0

 +


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 −


0 0 0 0
0 β1 0 0
0 0 0 0
0 0 0 β2


P =


α+ a −a 0 1

0 α− b− β1 0 0
d 0 α− c 0
−e −e 0 α− β2


The eigenvalues of the matrix P are,

λ1 = α− b− β1
λ2 = α− c
λ3,4 =

(β2−2α−a)±
√

(β2−2α−a)2−4[α2+(a−β2)α−aβ2+e]

2

So that the required stability conditions are:
(1) For λ1 = α− b− β1, we have β1 < α− b
(2) For λ2 = α− c, we have α < c
(3) If (β2−a−2α)2 < 4[(α2+(a−β2)α−aβ2+e], then
λ3,4 are complex and stability condition is β2 > 2α+ a
(4) If (β2 − a− 2α)2 > 4[(α2 + (a− β2)α− aβ2 + e],
then λ3,4 are real and stability condition is β2 > 2α+ a
and [(α2 + (a− β2)α− aβ2 + e] > 0

Choosing a suitable value of β1 = 45 and β2 = 70,
complete synchronization was obtained.

4.6 Cyclic Coupling Between z and w Variables
When H3,4 = diag(0, 0, 1, 1), we obtain

ẋ1 = a(x1 − y1)− y1z1 + w1 (14)
ẏ1 = −by1 + x1z1

ż1 = −cz1 + dx1 + x1y1

ẇ1 = −e(x1 + y1) + β2(w2 − w1)

ẋ2 = a(x2 − y2)− y2z2 + w2

ẏ2 = −by2 + x2z2

ż2 = −cz2 + dx2 + x2y2 + β1(z1 − z2)

ẇ2 = −e(x2 + y2)

Using the stability condition (8) in (14), we have

P =


a −a 0 1
0 −b 0 0
d 0 −c 0
−e −e 0 0

 +


α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 −



CYBERNETICS AND PHYSICS, VOL. 8, NO. 4, 2019 273
0 0 0 0
0 0 0 0
0 0 β1 0
0 0 0 β2


P =


α+ a −a 0 1

0 α− b 0 0
d 0 α− c− β1 0
−e −e 0 α− β2


The eigenvalues of matrix P are,

λ1 = α− c− β1
λ2 = α− b
λ3,4 =

−(β2−2α−a)±
√

(β2−2α−a)2−4[(α+a)(α−β2)−e]
2

So that the required stability conditions are:
(1) For λ1 = α− c− β1, we have β1 < α− c
(2) For λ2 = α− b, we have α < b
(3) If (λ2 − a − 2α)2 < 4[(α + a)(α − λ2) − e], then
λ3,4 are complex and stability condition is λ2 > 2α+ a
(4) If (λ2 − a − 2α)2 > 4[(α + a)(α − λ2 − e], then
λ3,4 are real and stability condition is λ2 > 2α + a and
[(α+ a)(α− λ2)− e] > 0

Choosing a suitable value of β1 = 1 and β2 = 1,
complete synchronization was obtained.

5 Results and Discussion
Having established the analytical criterion for synchro-

nization in each pair of the cyclic coupled variables, we
shall confirm each of the derived analytical criterion us-
ing MultiSIM software and analog circuit. Now, we im-
plement the analytical criterion obtained for each pair of
the hyperchaotic system with each of system with dif-
ferent initial conditions (1, 0, 1, 5) and (5.5, 6, 7.2, 8) on
MultiSIM software. The results from MultiSIM software
shown in Fig 3 confirm the correctness and effectiveness
of the derived analytical criterion. The results in Fig. 3
show that five out of the six topology synchronized ex-
cept topology that involves y and z variables. The re-
sults in Fig. 3 is in perfect consonance with the analyt-
ical criterion obtained in section 4. On the other hand,
the circuit realization involves integrators and summers
built with operational amplifiers , TL084CN (UiA), mul-
tipliers (A1 − A6), power supply unit, resistors and ca-
pacitors. The two analog circuits captured in Fig. 4,
with initial conditions (1, 0, 1, 5) and (5.5, 6, 7.2, 8) used
for different cyclic synchronization paths. The coupling
constant which determine the small or large window
of the phase portrait of the attractor can be generated
from kx,ky ,kz and kw depending on the choice of the
trajectory of the cyclic path, where kx=k(x1 → x2)
or k(x1 ← x2), ky=k(y1 → y2) or k(y1 ← y2),
kz=k(z1 → z2) or k(z2 ← z1) and kw=k(w1 → w2) or
k(w2 ← w1). To achieve the desired goal, the coupling
constant is varied according to analytical value obtained
in section 4 and the results obtained are shown in Fig.

5. The results in depict in Fig. 5 show that synchroniza-
tion is observed in each of the five pair of the variable
considered. The analog circuit implementation of syn-
chronization between cyclic coupling variables y and z
variables is not shown in Fig. 5 because the analytical
and MultiSIM software simulation already confirm there
is no synchronization in y and z topology.

6 Conclusions
Cyclic coupling synchronization scheme for two iden-

tical 4D hyperchaotic systems has been proposed in this
research paper. The results from numerical and exper-
imental simulations confirm the effectiveness and the
feasibility of the derived analytical criterion. In other
word, the analytical, numerical and analog implementa-
tion confirm synchronization in five out of six available
topologies. The main advantage of cyclic coupling is
that it gives several choices for synchronization, as a re-
sult, synchronization choices can be optimized. It help to
limit the choice of synchronization to a particular pair of
variables or any desired pair of variables that would give
the least synchronization time and synchronization cost.
Hence, cyclic coupling synchronization scheme can be
used to save synchronization time and synchronization
cost.
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