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Abstract
“Rough” differential equations form a class of control-

affine dynamical systems driven by input signals of a
low regularity, namely, paths of bounded p-variation
(BVp), p > 1.
In this paper, we address impulsive rough control sys-

tems, i.e., rough differential equations driven by dis-
continuous BVp-controls. The main results are: the
existence of a unique state solution under a discontin-
uous rough input, and a constructive representation of
the system’s states. The representation is performed by
a discrete-continuous equation involving a Young inte-
gral and the sum of jumps of a trajectory, defined by an
auxiliary ordinary differential equation.
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1 Introduction
Our study is undertaken towards developing the math-

ematical theory of impulsive control systems with
states of unbounded variation, and appeals to a rela-
tively new and challenging branch of the modern con-
trol theory called the rough paths theory. This control-
theoretical framework, originated in [Lyons, 1994], and
further developed in [Gubinelli, 2004,Dudley and Nor-
vais̆a, 2011, Lejay, 2013, Lyons, 1998, Lyons and Qian,
2002], is, actually, the theory of control differential
equations driven by paths (continuous controls) of class
BVp — introduced by N. Wiener and composed of
functions having bounded p-variation, p ≥ 1, — with
deep roots in differential geometry and a rich algebraic
background. Being in deterministic settings, the the-
ory of rough paths is at the same time closely related to
stochastic control and noisy differential equations by

Îto and Stratonovich.
In this remark, we extend the concept of rough dif-

ferential equations to the impulsive control setup by
admitting discontinuous controls (and discontinuous
states) of bounded p-variation, p ∈ [1, 2).
Depending on the “order of irregularity” of input sig-

nals, one can mark out three basically different settings
for control-affine dynamical systems.

1.1 The Well-studied Case p = 1: “Classical”
Impulsive Control by Signals of the Jordan’s
Class BV

Impulsive control systems, acting over a finite control
period T = [a, b] ⊂ R, are commonly described by
measure differential equations of the sort

dx = f(x) dt+G(x) dw, x(a) = x0, t ∈ T, (1)

where f : Rn → Rn and G : Rn → Rm×n are
given locally Lipschitz continuous vector and matrix
functions; states x : T → Rn and controls w : T →
Rm are (discontinuous) functions of bounded variation
(BV ). Differential forms dx, dw can be treated here
as vector-valued Borel measures induced by respective
functions. For continuous controls, a solution of (1) can
be defined by Lebesgue-Stieltjes or Perron-Stieltjes in-
tegration against a given function w.
A natural way system (1) enters the scene is a tra-

jectory compactification (relaxation) of an ordinary
control-affine system

ẋ = f(x) +G(x) ẇ, x(a) = x0, t ∈ T, (2)

with inputs w ∈ W 1,1(T,Rm), w(a) = 0.1 Such a

1The tube of Carathéodory solutions to the Cauchy problem (2)
is not generically closed in the natural topology of uniform conver-
gence, as states can pointwise tend to discontinuous functions.
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compactification is dictated by needs of related optimal
control problems, stated for system (2) under the con-
straint on the total “control action”:

∫
T
|ẇ| dt ≤ M

with a given M > 0. Such variational problems com-
monly appear to be singular in the sense [Gurman,
1997], and, generically, do not have solutions in the
class of ordinary controls. A trajectory compactifica-
tion, thus, requires a weaker topology (compared to the
natural topology of the uniform converges of trajecto-
ries), and implies an extension of the concept of so-
lution to the dynamical system. The topologies, for
which the desired trajectory compactification can be
defined constructively, are: the weak* topology of BV ,
the topology of pointwise convergence, and the topol-
ogy of graph convergence in the Hausdorff distance.
Compactifications in these topologies lead to gener-
alized solutions of bounded variation and generalized
controls of the type of vector-valued Borel measures
[Arutyunov, Karamzin, and Pereira, 2014, Arutyunov,
Karamzin, and Pereira, 2011, Bressan and Rampazzo,
1988, Bressan and Rampazzo, 1994, Dykhta and Sam-
sonyuk, 2000, Dykhta and Samsonyuk, 2015, Gon-
charova and Staritsyn, 2015, Goncharova and Starit-
syn, 2012, Karamzin at al., 2015, Karamzin at al.,
2014, Miller, 1996, Motta and Rampazzo, Miller and
Rubinovich, 2003,Pereira and Silva, 2000,Sesekin and
Zavalishchin, 1997, Silva and Vinter, 1996]).

1.2 The Case 1 < p < 2: An Extension of Stieltjes
Integration due to L.C. Young

For the simplest case of bounded p-variation of con-
tinuous control w, p ∈ (1, 2), the mathematical setup
behind the control theory is, principally, the same as
in the above case p = 1. Equation (1) driven by such
paths can be uniquely solved by Young’s integration:

∫ t

a

g(s) dw(s). (3)

Here, w and g are assumed to have finite p- and q-
variations, respectively, p−1 + q−1 > 1. In fact, (3) is
a Stieltjes integral, which remains well defined due to a
wonderful assertion by L.C. Young [Young, 1936] (see
also [Dudley and Norvais̆a, 1999, Norvais̆a, 2015, Le-
jay, 2013]).

1.3 The Threshold Case p = 2 and a General
Setup for p ≥ 2: Rough Paths due to T. Lyons
and M. Gubinelly

For p ≥ 2, an adequate solution concept for differ-
ential equation driven by controls of the class BVp is
much more complicated, and this is the heart of the
rough paths theory. As such, the term “rough path” was
first introduced in [Lyons, 1994]. The basic setup here
is somehow similar to the non-commutative case in im-
pulsive control of measure-driven systems: One can de-
sign the closure of BV ∩C inside BVp∩C, and points

of this closure are said to be rough paths. Next, one
considers a sequence {wk} ⊂ BV ∩ C converging in
a specific metric to a rough path w ∈ BVp ∩ C. Under
certain regularity assumption of input data (say, G may
be γ-Lipschitz with γ > p), one establishes the con-
vergence of the respective states xk of (1) to a function
x ∈ BVp ∩ C, which is named a solution to (1) under
the input w. In this reasoning, it occurs that the defined
state x = x[w], in fact, depends on the choice of an
approximating sequence wk of w; in order to perform a
single-valued selection of the multivalued input-output
mapping w 7→ x, one should enhance control w with
certain extra data. In the rough paths theory, this nec-
essary extra information is provided by a combinatorial
object called the signature of a path or Chen series.
The general theory of rough paths acquires a formal

structure relying on an algebraic rather than analytic
approach. A formal rough path of order N over w is
a bundle of functions

(
w, . . . , (w(i1,i2))i1,i2=1,m, . . . ,

(w(i1,...,iN ))i1,...,iN=1,m

)
of a certain Hölder regular-

ity, which satisfies the so-called Chen’s and shuffle
properties [Lejay, 2013]. For smooth paths w, this bun-
dle performs a canonical lift of w to the free nilpotent
Lie group of order N .
Yet another advancement of the rough paths theory is

based on an axiomatic approach, first developed in [Gu-
binelli, 2004], which does not require any approxima-
tion scheme, nor needs Lie group-theoretic or geomet-
ric arguments.

1.4 Impulsive Rough Differential Equation: To-
wards Impulsive Control with States of Un-
bounded Variation

Mathematical control theory for systems with trajec-
tories of unbounded variation is, by now, a rather frag-
mentary framework, compared to the BV case.
A major part of studies here are confined within the

simplest cases, when the vector fields, defined by the
columns of the matrix function G, satisfy the well-
known Frobenius commutativity condition, or its gen-
eralization called the involutivity assumption, which
is also very restrictive [Bressan and Rampazzo, 1988,
Dykhta and Samsonyuk, 2000, Gurman, 1997, Sesekin
and Zavalishchin, 1997].
In what concerns the general setup, we should men-

tion the recent paper [Aronna and Rampazzo, 2013],
which establishes the concept of so-called L1-limit so-
lutions to control-affine systems, and raises the idea of
impulsive control with BVp-inputs as a potential try-
out.
In the present paper, we address control dynamical

systems of the form (1) with trajectories x and con-
trol inputs w being (possibly, discontinuous) functions
of the Wiener’s class BVp. We call systems of type (1)
impulsive rough differential equations. The main goals
are: (i) extension of the solution concept of a rough
differential equation to the case of discontinuous con-
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trols, and (ii) constructive representation of discontin-
uous states of bounded p-variation by a discontinuous
time reparameterization.
We restrict our consideration to the case p ∈ [1, 2).
For the ease of presentation, we operate with scalar

controls and states, i.e., assume that n = m = 1.
Our approach is based on pointwise approximation

of rough solutions to equation (1) by a sequence of
regular states produced by absolutely continuous in-
puts wk with uniformly bounded p-variation. In other
words, we look at system (1), driven by BVp-controls,
p ∈ [1, 2), as at a certain trajectory relaxation of ordi-
nary control system (2).

1.5 Control-theoretical and Practical Motivation
Dynamical systems driven by rough signals appear

in modeling physical systems with highly oscillatory
or random forces, arising in hydrology, fluctuations in
solids etc. Such objects also naturally arise in math-
ematical finance, data networks and modeling Inter-
net traffic [Lejay, 2013, Lyons, 1998, Lyons and Qian,
2002]. Typical examples from stochastic control are
classical and fractional Brownian motions (see Sec-
tion 2.1).
In connection with impulsive control, a theoretically

reasonable issue is the problem of sparse correction of
objects, operating in a fuzzy media. Practical cases
here are performed by some nanosystems, say, medi-
cal nanorobots, moving in a noisy environment (blood
stream), where natural perturbations, conditioned by
a Brownian motion of particles or other stochastic
phenomena, perceptibly affect the system’s behavior.
Models of this sort can be described by impulsive rough
dynamical systems of type (1):

dx = f(x) dt+G(x) dw +H(x) dµ,

where µ ∈ BV is the control signal (dµ is, commonly,
a series of instantaneous impulses implementing point-
time corrections of system’s state), and w ∈ BVp is the
perturbation, which is a rough signal representing the
influence of the environment.

2 Functions of Bounded p-variation: Definitions,
Basic Properties and Examples

Let p ≥ 1. Following [Wiener, 1924], the total p-
variation of a function g : T → Rk on an interval T is
the quantity Vp(g;T ), defined by

Vp(g;T )
.
=

(
sup
π

N∑
i=1

∣∣∣∣g(ti)− g(ti−1)
∣∣∣∣p)1/p

,

where sup is taken over all finite partitions π =
{t0, t1, . . . , tN} of T , a = t0 < t1 < . . . < tN = b.

The value Vp(g;T ) can be infinite. If Vp(g;T ) < ∞,
we say that g is a function of bounded p-variation. The
set of functions T → Rk of bounded p-variation is de-
noted by BVp(T,Rk). It is a Banach space with the
norm ||g||BVp

.
= ||g||L∞ + Vp(g;T ).

Let us recall some basic properties of BVp-functions
[Chistyakov and Galkin, 1998]:

• For any g ∈ BVp(T,Rk), the set of discontinuity
points of g is at most countable, and, for all points
a ≤ s < t ≤ b, there exist one-sided limits

g(t−)
.
= lim

τ→t−
g(τ), g(s+)

.
= lim

τ→s+
g(τ).

• g ∈ BVp(T,Rk) iff there exists a bounded non-
decreasing function φ : T → R, and a Hölder
continuous function h : φ(T ) → Rk of exponent
γ = 1/p with the Hölder constant H(g) ≤ 1, such
that g = h ◦ φ.

• A generalization of the Helly’s selection prin-
ciple (a compactness theorem for functions of
bounded p-variation): Let K be a compact sub-
set of Rk. Let F be an infinite family of functions
T → K of uniformly bounded p-variation, that is,
sup
g∈F

Vp(g;T ) < ∞. Then there exists a sequence

{gk} ⊆ F converging pointwise on T to a function
g ∈ BVp(T,Rk).

• Any function g ∈ BVp(T,Rk) admits a unique
representation g = gc + gd, where gc is a contin-
uous function called the continuous component of
g, and gd is the sum of jumps of g.

We also cite a basic result for rough differential equa-
tions with BVP -controls, p ∈ [1, 2), [Lejay, 2013].
Let F = (F1, F2, . . . , Fk) be a matrix function Rn →
Rn×k. Consider a control equation

x(t) = x0 +
k∑

i=1

∫ t

a

Fi

(
x(t)

)
dwi(t), t ∈ T, (4)

where w is a continuous function of bounded p-
variation with p ∈ [1, 2).

Theorem 2.1. [Lejay, 2013]. Let F be α-Hölder con-
tinuous with α > p− 1. Then there exists a continuous
function x of bounded p-variation being a solution to
(4). Furthermore, assume that F is bounded, while its
derivative is bounded and α-Hölder continuous with
α > p− 1. Then the solution x is unique.

2.1 Examples
In this Section, we collect a few simple but eloquent

examples of BVp-functions:
a) A continuous, nowhere differentiable function

g(t) =
∞∑

n=0

ϕ
(
2nt
)

2n
, t ∈ [0, 1],
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where ϕ(y) = min
z∈Z

|y − z|, and Z denotes the set of

integers. One can easily verify that Vp(g; [0, 1]) < +∞
for any p > 1.

b) A function g : [0, 1] → R,

g(t) =

{
t sin(1/t), t ∈ (0, 1],

0, t = 0,

which is continuously differentiable on (0, 1]. Clearly,
Vp(g; [0, 1]) < +∞ for any p > 1.

c) An example relating to stochastic processes is pre-
sented by the fractional Brownian motion (fBm) with
the Hurst index 0 < H < 1. It is a centered Gaus-
sian process t → BH

t , t ∈ [0, t1], with BH
0 = 0 and

covariance

Cov(BH
t , BH

s ) =
1

2

(
t2H + s2H − |t− s|2H

)
for all t, s ∈ [0, t1]. The case H = 1/2 corresponds
to classical Brownian motion. FBm is Hölder continu-
ous with exponent γ for every γ < H . Thus fBm has
bounded p-variation for p > 1/H .

d) A discontinuous function of bounded p-variation,
p > 1,

g(t) =


ln 2, t = 0,

g
(
1
k

)
+ (−1)k+1

k , t ∈
[

1
k+1 ,

1
k

)
, k ≥ 1,

0, t = 1.

It is easy to check that V1(g; [0, 1]) = +∞, while
Vp(g; [0, 1]) < +∞ for all p > 1.

3 Solution Concept for Impulsive Rough Differ-
ential Equations. Representation of States of
Bounded p-variation, p ∈ [1, 2), by a Discrete-
continuous Integral Equation

In what follows, we adopt the following hypotheses:
(H1) The functions f and G are locally Lipschitz con-
tinuous, f is of sublinear growth, and G is bounded on
R, i.e, for any compact Q ⊂ R, there exist constants
Lf,G = Lf,G(Q) such that, for all x1, x2 ∈ Q, it holds

|f(x1)− f(x2)| ≤ Lf |x1 − x2|,

|G(x1)−G(x2)| ≤ LG |x1 − x2|,
(5)

furthermore, there exist constants cf , cG > 0 such that

|f(x)| ≤ cf (1 + |x|), |G(x)| ≤ cG ∀ x ∈ R. (6)

(H2) The derivative Gx is bounded on R, and satisfies
the Hölder condition with exponent α > p− 1.
Given p ≥ 1, consider solutions of system (2)

produced by control inputs w with bounded total p-
variation Vp(w;T ). Let us show that any sequence
of such solutions contains a subsequence converging
pointwise to a function of bounded p-variation.
Consider a control sequence {wk} ⊂ W 1,1(T,R)

with uniformly bounded p-variations, that is, there ex-
ists M > 0 such that

Vp(wk;T ) ≤ M

for all k ≥ 1. According to the Helly’s selection prin-
ciple — passing, if necessary, to a subsequence —
we can assume that {wk} is pointwise converging to
a function w ∈ BVp(T ) with w(a) = 0.
Let {xk} be a sequence of Carathéodory solutions to

(2), generated by {wk}. Pointwise limits of {xk} are
said to be generalized solutions of (2).

Lemma 3.1. Let {wk} ⊂ W 1,1(T,R) be a control se-
quence such that

sup
k≥1

Vp(wk;T ) < ∞ (7)

and {xk} be the sequence of the corresponding solu-
tions to differential equation (2). Then,

i) {xk} is uniformly bounded, and there exists a con-
stant K > 0 such that

Vp(xk;T ) ≤ K ∀ k ≥ 1; (8)

ii) There exist a function x ∈ BVp(T,R) with
Vp(x;T ) ≤ K and a subsequence {xkj} ⊆ {xk}
such that xkj

(t) → x(t) for all t ∈ T .

Proof: i) First, note that {wk} is uniformly bounded,
and there exists a constant Cw > 0 such that

sup
k

||wk||C ≤ Cw. (9)

To prove the uniform boundedness of {xk} and
{V (xk, T )}, we apply the so-called nonlinear Goh’s
transform [Dykhta and Samsonyuk, 2000]. Consider
the following system of adjoint partial differential
equation:

ηw(x,w) + ηx(x,w)G(x) = 0, η(x, 0) = x, (10)

ξw(y, w) = G
(
ξ(x,w)

)
, ξ(y, 0) = y. (11)
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Solutions of (10) and (11) are related by the equalities:

η
(
ξ(x,w), w

)
= y, ξ

(
η(x,w), w

)
= x,

η(x,w) = ξ(x,−w).
(12)

Under assumptions (H1), (H2), a solution ξ does exist
on R2, it is Lipschitz continuous, has bounded partial
derivatives ξx, ξw.
For any k ≥ 1, consider the transformation yk(t) =
η
(
xk(t), wk(t)

)
of a solution xk to (2). Then, yk is a

solution of the differential equation

ẏk = g(yk, wk), yk(a) = x0, (13)

where g(y, w)
.
= ηx(x,w)f(x)

∣∣∣
x=ξ(y,w)

. From (9), it

follows that

sup
k

||yk||C < ∞,

sup
k

Vq(yk, T ) < ∞ ∀ q ≥ 1.
(14)

For each k ≥ 1, functions xk and yk are related by the
equality

xk(t) = ξ
(
yk(t), wk(t)

)
, (15)

that is, xk has bounded p-variation [Appell, Guanda,
Merentes, and Sanchez, 2011]. Combining (7) and (14)
with (15), we can prove that {xk} and {Vp(xk, T )} are
uniformly bounded.
ii) This assertion is, in fact, implied by the Helly’s

selection principle.
This note finishes the proof.
Given p ∈ [1, 2), let Wp = Wp(T ) denote the set of

functions w ∈ BVp(T,R), which are right continuous
on (a, b] and satisfy w(a) = 0.2

Let w ∈ Wp. On the interval T , consider the follow-
ing discrete-continuous integral equation: x(a) = x0,

x(t) = x0 +

∫ t

a

f
(
x(ς)

)
dς +

∫ t

a

G
(
x(ς)

)
dwc(ς)

+
∑

s≤t, s∈Sd(w)

(
zs(1)− x(s−)

)
, t ∈ (a, b], (16)

Here,

Sd(w) = {s ∈ T | [w(s)] .
= w(s)− w(s−) ̸= 0}

2The assumption of one-sided continuity is technical and does not
imply loss of generality.

denotes the set of jump points of w. The integral with
respect the continuous part wc ∈ BVp(T,R) of control
w in the right-hand side of (16) is understood in the
Young’s sense, and the functions zs, s ∈ Sd(w), are
defined as solutions on [0, 1] of the ordinary differential
equations

dzs(τ)

dτ
= G

(
zs(τ)

)
[w(s)], zs(0) = x(s−). (17)

By a solution to impulsive rough differential equation
(2) under a control input w ∈ Wp we mean a right
continuous on (a, b] function x ∈ BVp(T,R) satisfying
discrete-continuous system (16), (17), i.e., it turns (16)
into an identity.

Theorem 3.1. Given p ∈ [1, 2), assume that hypothe-
ses (H1) and (H2) are satisfied. Then the following
assertions hold true.

i) (The existence of a solution): For any w ∈ Wp,
there exists a unique solution x = x[w;x0] ∈
BVp(T,R) of (16).

ii) (Approximation by ordinary control pro-
cesses): For any w ∈ Wp, there exists a sequence{
wk

}
⊂ W 1,1(T,R) of control inputs of system

(2) such that

- there exist positive constants Mw and Mx in-
dependent of k and such that

Vp(wk;T ) ≤ Mw and Vp(xk;T ) ≤ Mx,

where xk
.
= x[wk;x0] (uniform bounded-

ness of p-variations of controls and respec-
tive Carathéodory solutions of (2)), and

- xk converges to x at all continuity points and
at the terminal instant t = T .

The proof is based on the nonlinear Goh’s transform
(described just above), and a special discontinuous time
change [Samsonyuk and Staritsyn, 2017] generaliz-
ing the so-called space-time reparameteization [Miller,
1996, Miller and Rubinovich, 2003, Motta and Ram-
pazzo, Sesekin and Zavalishchin, 1997] to the case of
states with bounded p-variation. Note that, by the dis-
continuous time change, equation (1) is transformed to
an auxiliary rough differential equation with controls
and states being continuous functions of class BVp(R).

4 Conclusion
The paper raises a novel and challenging issue of

mathematical control theory: impulsive control of dy-
namical systems driven by signals of unbounded varia-
tion, i.e., of a lower regularity than the familiar class of
impulsive controls represented by Borel measures.
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At the present step, we are confined within the sim-
plest case p ∈ [1, 2). A further extension of the im-
pulsive control framework to systems acted by BVp-
controls with p ≥ 2 has to heavily rely on the appa-
ratus of the theory of rough paths, briefly discussed in
Introduction.
Finally, note that, instead of Wiener’s classes BVp,

one can attempt to operate with controls being func-
tions of a more general, Young’s class BVΦ [Young,
1937] (here, Φ : R+ → R+ is an arbitrary continuous
monotone increasing function with Φ(0) = 0; taking
Φ(u) = up, we obtain the class BVp), or so-called reg-
ulated functions [Aumann, 1954, Dieudonné, 1969].
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