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Abstract

Understanding statistical properties of cognitive sys-
tems is one of the main goal of complex systems
physics. The automata gas is a statistical system whose
particles perform information based interactions and
use a decision mechanism. The collective nature of
such interactions is at the base of the self-organized dy-
namical states of the system. In some cases it is possi-
ble to study the emergence of these states, by using an
adiabatic separation between the dynamics time scales
and the particle distribution time scale. Then the emer-
gent properties can be related to the solutions of a non-
linear diffusion equation. The considered models have
a wide range of application in biology and social sci-
ences to describe the self-organization properties ob-
served in the experiments. Our main interest is to de-
velop a model for the pedestrian dynamics in a urban
space. We study the properties of a automata gas in
some simple cases and we discuss the applicability of
the adiabatic approach.
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1 Introduction

The theoretical approach to complexity science is re-
lated to the definition of various classes of models
inspired by the different application fields. Taking
the Von Neumann automaton definition[ Von Neumann,
1963] as a starting point, there has been recently pro-
posed the “automata gas model”[Turchetti, 2007] as
a generalization of a granular flow model, whose el-
ementary particles has an internal cognitive structure
able to process information and to take decisions ac-
cording to an utility function[Domencich, 1975]. This
model can be included in the agent based models
class[Schweitzer, 2003], that has been developed to
simulate biological systems like ants colonies[Detrain,
2006] or social systems like pedestrians in urban
spaces[Batty, 2003]. In this paper we present a simple

automata gas model to study the existence of emergent
properties that can be directly to a cognitive behavior.
The automata have a cooperative attitude based on the
information on the population collective behavior and
move subjected to physical interactions with other au-
tomata and the external environment. The physical in-
teractions consider both inelastic collisions due to the
finite volume effects, and a ’visual interaction” that in-
troduces a repulsive force among the automata: in such
a way the automata tend to avoid hard collisions when
it is possible.

Conversely the cognitive behavior is based on the
existence of an internal cognitive state for each au-
tomaton[Gelder, 1998], whose dynamics is given by a
stochastic differential equation in the landscape poten-
tial defined by the utility function[Domencich, 1975].
The external information modifies the landscape util-
ity potential and determines the automaton propensity
towards a certain choice. The cognitive dynamics in-
troduces a nonlinear relation between the utility and
the decision probability (in the Bayes-De Finetti inter-
pretation of subjective probability[de Finetti, 1972]),
that is consistent with recent observations and exper-
iments in neuroscience[Nadel, 2003]. Our aim is to
study phase transitions into self-organized states that
are consequence of the cognitive automaton dynam-
ics. Similar problems have been considered by other
authors[Camazine, 2001] in biological systems to dis-
tinguish the collective behaviors due to physical in-
teractions from the strategies related to evolution and
learning processes. A rigorous proof of the results pre-
sented in the paper would require to prove a general-
ized law of large numbers for interacting particles with
collisional finite volume effects: this is beyond the pur-
pose of this paper. The model we are interested, is rel-
evant for simulation of pedestrian dynamic problems
in urban spaces. Pedestrian dynamics has been con-
sidered by physicists to study the appearance of con-
gestion effects in panic stampede and criticalities in
crowd dynamics[Helbing, 2005]. The attention was fo-
cused mainly on physical interactions among pedestri-
ans to improve the safety[Helbing, 2005]. But recently
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Figure 1.  Sketch of automaton physical dimensions: the dark circle
is the incompressible body of radius 7; the light circle is the social
space of radius 27, and the larger semicircle is the frontal visual

space of radius 57°p.

the urban planners and sociologists have pointed out
the complexity characters of the urban mobility and
its relevance for life quality[Fruin, 1971], that cannot
be simulated using the classical origin-destination ap-
proach[Cascetta, 2001]. Under this point of view, the
automata gas model may become a useful instrument
for the urban planners both to take into some the cog-
nitive aspects of pedestrian mobility related to the ap-
pearance of preferred paths or habits and to produce a
mobility ”governance”[Giorgini, 2007].

2 The automata gas model: physical interactions

The automata gas model is a generalization of a 2-
dimensional granular flow model. The elementary par-
ticles (automata) have a finite body dimension r, that
defines the microscopic spatial scale of the system, a
social space space of dimension 27, and a visual space
of dimension >~ 5r,. We also provide the automata of
an inertial mass m. In the figure 1, we plot a sketch
of the automaton physical properties; to reproduce the
effect of a frontal vision, the visual space is limited to
a semicircle centered at the velocity direction. Each
automaton 4 tends to move at a desired velocity vp; ac-
cording to
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where the parameter 1 /- defines the microscopic relax-
ation time scale of the system. The automata perform
inelastic collisions due to their body incompressibility
and the momentum P in the center of mass reference
system changes according to

P =R(0+ ¢)\/1 —nsin® 0P 2)

where R(0) is a rotation matrix of an angle 6 in the
plane: @ is the collision angle as defined in the figure 2.
The parameter 7 controls the kinetic energy loss which
is maximal when 6 = 7 /2 (head-on collision), and the
angle ¢ € [0, 0] introduces a sliding effect between the
colliding automata. We remark that 7 = 1 and ¢ = 0
define a classical inelastic collision whereas 7 = 0 and
¢ = 0 give a purely elastic collision.
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Figure 2.  Physical collision between two incompressible automata

in the center of mass reference system.
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Figure 3. Collision avoiding strategy of automata as a consequence

of a local vision mechanism.

The visual space introduces a topological long range
interaction among the automata in the following way:
each automaton checks all the other automata in his vi-
sual space to detect if somebody will enter into his so-
cial space; in such a case he rotates and reduces the
velocity in order to perform a strategy to avoid future
collisions. The rotation velocity w and the decelera-
tion rate o are constant (not depending from the dis-
tance of the ”dangerous” automata). Therefore the net
result is a repulsive force among the automata coming
from opposite directions and the automaton tendency
to move towards empty regions of the space or to fol-
low the automata moving in the same direction (see
fig. 3). The repulsive force turns out to be propor-
tional to the density of counteracting automata in the
visual space and to the rotational velocity and deceler-
ation rate values. We remark that the “’local vision™ has
not the features of a Newtonian force since the Action-
Reaction principle is not valid for a frontal vision. The
long range character local vision allows the formation
of of self-organized dynamical states: let us consider
two counteracting automata flows along a narrow cor-
ridor. The collision dynamics defined by eq. (2) in-
troduces a stochastic perturbation in the velocity equa-
tion (1) which has a finite transverse component with
respect to the desired velocity (directed along the corri-
dor). If 7y is not too big and the local vision mechanism
is switched off, both the automata populations tends
to distribute disorderly along the corridor according to
maximal entropy principle (see fig. 4 top). If we switch
on the local vision, it appears a density depend force in
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Figure 4. Dynamics of two counteracting flow of automata moving
along a corridor. When the automata interact only by means of inelas-
tic collisions a disordered state is observed along the corridor(top); if
we switch on the local vision interaction, a two streams ordered flow

appear along the corridor (bottom).
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Figure 5. Transverse dynamics along the corridor according to the
detailed balance equations; the arrows denote the transition probabil-
ities between the top and bottom lines.

the transverse dynamics that increases the displacement
probability of an automaton when he meet a cluster of
counteracting automata. As a result a self-organized
state is created, with two ordered streams moving along
corridor (see fig. 4 bottom). To get a qualitative expla-
nation of the observed phenomenon, one can consider a
detailed balance equation to describe the transverse dy-
namics along the corridor. Let us divide the corridor in
two lines and let pti,b the probabilities that an automa-
ton moves in the positive (4) or negative (—) direction
along the top ¢ or the bottom b lines. The detailed bal-
ance equations read (cfr. fig. 5)

dp
—L = —phpt + oot
dt
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with the constraint pti + pf)t = 1. piﬁbt are the tran-
sition probabilities that depend nonlinearly on the au-
tomata distribution when the vision mechanism is con-
sidered due to the presence of multiple collisions. In a
perturbative approach, we set

ps, = Dp; (L+c(p; —py)) +D'pf
P = Dp, (1+clpy, —pi)) + D'pf
4

and analogous formulas for p,; and p,,. The coeffi-
cients D and D’ describe the effects of binary interac-

tions (we have an obvious inequality D’ < D since the
interactions among the automata moving in the same
direction is weak), whereas the coefficient ¢ weights
the collective interactions due to local vision that de-
pend on the counteracting automata distribution in both
the lines. After some algebraic manipulations, it is pos-
sible to explicitly compute the equilibrium states of eq.
(3), from the equation

(2¢Dpf (1 —pf)=D") (7 —p;)=0 (5

p, = p; = 1/2 is the uniform distribution along the
corridor (ergodic solution), but we have another equi-
librium solution at
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Therefore it exists a critical value ¢, = 2D’/ D for the
collective effects weight over which a self-organized
stable equilibrium appears corresponding to a non-
uniform transverse distribution of automata along the
corridor; at the same time the ergodic solution becomes
unstable. This picture is consistent with the simulations
show in fig. 4. In order to apply the detailed balance
equation a physical separation between the two lines
is needed to avoid instabilities due to collisions; under
this point of view one has to take into account the finite
volume effects and the continuous limit is not trivial.
We finally remark that the self-organization due to the
local vision cannot be considered the result of a cogni-
tive process since it is essentially related to a collective
effect and not to an internal cognitive process of au-
tomata; indeed the same phenomenon is observed in
various granular flow models.

3 The automata gas model: cognitive behavior
The mathematization of cognitive interactions is still
an open problem, and under a certain point of view
the game theory is simulation of decision mecha-
nism[Parsons, 2002]. Therefore one can consider a
class of models based on simple assumptions that are
supported by experimental observations. Being in-
spired by recent experimental results in neuroscience
research[Nadel, 2003], a dynamical model for the cog-
nitive behavior should take into account the following
remarks:

- the decisions are always mediated by the brain ac-
tivity (existence of a cognitive space);

- there is a nonlinear subjective relation between the
utility” of a decision and the probability of taking
that decision: overestimate of small advantages
and underestimate of the large advantages with re-
spect to a linear relation;

- there is an aversion to risk.



Out dynamical model to introduce an automaton cogni-
tive behavior, can be formulated according the follow-
ing assumptions:

- the brain activity can be represented by a dynam-
ical system defined on a n-dimensional cognitive
space;

- the utility associated to a decision introduces a
landscape potential in the cognitive space whose
shape depends on the external information;

- the cognitive state is stochastically perturbed;

- let E; j = 1,...,n + 1 the events associated to the
possible decisions, there exists a probability func-
tion P(E;; X) which is a function of the cognitive
states.

The first assumption essentially states that the brain is
a huge dynamical systems, that can be macroscopically
described, when we limit his activity to simple choice
operations. The existence of an utility function in the
decision mechanism has been proposed in various con-
texts[Domencich, 1975]; our point of view is to con-
sider the utility function as a potential V' (X;I) in the
cognitive space, whose minima could be related to the
utility of the different choices and depend on the ex-
ternal information /. Moreover we attribute the same
utility function to all the automata in a given popula-
tion. The third assumption is quite obvious since one
expects that any decision can be influenced by several
unpredictable uncorrelated factors. Finally the last as-
sumption allows to introduce a subjective rationality
since choice probabilities is different for automata with
a different cognitive state X or a different information
level. The cognitive dynamics for the ¢-automaton is
defined by the stochastic differential equation

ov
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where T; is the individual social temperature” (i.e.
a measure of the individual influence of external ran-
dom factors on the cognitive state) and w;(t) are in-
dependent Wiener processes. The information [ is ob-
tained from the external environment and it introduces
a global coupling among the automata since the au-
tomata dynamics changes the environment itself. If we
neglect I dependence the distribution function g; (X, t)
of the cognitive states satisfies a Fokker-Planck equa-
tion

0o; o oV 92 0;
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In this paper we discuss the case I = I(p) where

p(x,v,t) is the phase space density of the automata
population and the events E; are related to possible
choices of the desired Veloc1ty For a fixed cognitive
state and if one neglects the finite volume effects, the
automata distribution p(z, v, t) could be related to the

solution of a self-consistent Vlasov problem, where the
collective interactions are introduced by the local vi-
sion mechanism. In the sequel we analyze the case in
which the distribution p relaxes toward an equilibrium
distribution and the relaxation time is much faster than
the relaxation time of the each cognitive distribution
0:(X,t); then we can applied an adiabatic approxima-
tion to describe the p evolution due to the I changes,
by assuming that p is always in a stationary state for the
cognitive dynamics. In such a case, p can be considered
a function of the total cognitive states distribution

1 N
= D ailX.1) ©)
1=1

where the sum run over a fixed automata population.
and we have I = I(o(X,t)) in the equation (7) and the
cognitive dynamics separates from the spatial dynam-
ics. Under the hypothesis that one can proves a strong
law of large numbers[Oelschlager, 1989]

1 & 1<
Aim N;MX—Xi(t)) - N;Q1<X
(10)

it is possible to justified the coupled Fokker-Planck
equations for the distribution p;
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If lim || o0 V(2) = |2]|* with a > 0, from the system
(11) we get the self-consistent stationary solution

N
zzj i exp — # (12)

where A; are normalization constants.

For seek of simplicity, we specify the model for the
“atomic decision” (i.e. the choice between two possi-
bilities): the utility landscape potential is a double well
potential as sketched in fig. 6. Let n4 and n¢ the frac-
tion of automata population that chooses A or C, we
specify the utility potential according to

2
V(X,I) = kX? (X X XAXC)

1 g(XA - Xc) - 5

(13)
where X4 ¢ = Xo + cna c. The potential (13) sim-
ulates a cooperative behavior among the automata, c
being the cooperation parameter. When X < 0 the
choice A turns out more useful than the other choice C
and viceversa, as a consequence in a “’rational popula-
tion” we have

0 e’}
natt) = [ XX nelt) = / Q(X’(?ﬁx



Figure 6. Utility landscape potential in the case of an atomic deci-
sion: the minima A and C gives the utility of the considered choices.

i.e. the probability of choosing A (resp. C) is 1, if this
choice is evaluated more useful. Using the constraints
n4 + nco = 1, in the stationary state we have the self-
consistent equations for n 4

N 0 .
ng = ;;/mAiexp (W) dx

15)
na = nc = 1/2 is the trivial solution, but other so-
lutions are possible. An approximate computation can
be performed if the individual social temperatures T;
are small with respect the utility potential. Let us eval-
uated the individual transition probability between the
choices A and C by the Kramer’s theory[Hanggi 1990]

i wAWB : (i) WCeWB v, /T,
pa _ Va/T; Pl _ c/T;
AC om ¢ CcA om ©
(16)
where V4 o = V(Xa,¢,I) and wa g ¢ are the eigen-
value moduli of the potential critical points. Then the

equilibrium solutions satisfies
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(18)
The equation can be solved by using a fixed point
principle and a bifurcation phenomenon is observed at
¢ = ¢4, when the following condition holds

W—Aexp (VA;VC> =4 (19)

After some algebraic manipulations one gets an explicit
equation for the critical value c,

4 ke c\4
dro+3c= g = (900 n 5) (20)
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Figure 7. Cooperative solution 12 4 of the cognitive dynamics (7)
using the utility potential (13), with the following parameters k =
1,Xg=1 / 2; the individual “’social temperatures” are uniformly
distributed in the interval Tty = AT where Ty = .05 and AT =
.025. The dots are the MonteCarlo results on a population of 10*
automata, whereas the continuous curve refers to the direct solution
of eq. (17).

where T =< 1/T >~! is the harmonic mean of the
cognitive temperatures. When the cooperation param-
eter satisfies ¢ > ¢, the trivial solution nq = 1/2
becomes unstable and a self-organized cooperative so-
lution appears, in which the majority of population co-
ordinates the decisions to choose A or C. Of course
there is a strict relation between the self-organization
phenomenon and the ’information” (14) inserted in the
utility function. Indeed a key point to model a cogni-
tive behavior remains the definition of the “interesting
information” for a certain decision and her influence on
an utility function.

4 Numerical Simulations and Applications

In order to check the validity of the adiabatic assump-
tion and to study the role of the different parameters
in the automata gas model, we have performed numer-
ical simulations using models of increasing complex-
ity. First of all we have considered the cognitive dy-
namics (7) in the case of a double well utility potential
(13). We computed the cooperative stationary solution
n 4 using a MonteCarlo simulation on a population of
10* automata by varying the parameter c. The results
are reported in fig. 7, where we compared the numeri-
cal simulation with the self-consistent solutions (17).
The results confirm as the Kramer’s theory is effec-
tive when the social temperatures are sufficiently smal.
Moreover the the transitions probabilities (16) allow
to compute an approximate dynamics for the cooper-
ative population fraction n 4 (t); the results are shown
in fig. 8 where the comparison with MonteCarlo simu-
lations confirms the accuracy of Kramer’s approxima-
tion. In the previous simulations all the automata have
the global information (14) on the decision of other au-
tomata. This is a strong requirement for application,
then we consider the case in which each automaton
has information on the behavior of a limited number of
other automata (”friends”) randomly chosen in the pop-
ulation, but fixed during the simulation. This is equiv-



Figure 8. Relaxation process towards a cooperative solution: com-
parison between the MonteCarlo simulations and the balance equa-
tions associated to the transition probabilities (16). The parameters

are the same as in fig. 7 with ¢ = .5.
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Figure 9. MonteCarlo simulations of the cooperative behavior of
10* automata each of one gets information from a limited number
of randomly chosen friends (fixed during the simulations). The pa-
rameters are the same as in fig. 7 with ¢ = .5. The curves refer to
the evolution of the cooperative fraction in the case of 3, 5, 10, 100
friends for each automaton, randomly chosen in the population.

alent to introduce a random communication network
among the automata with a constant connectivity. The
results are plotted in fig. 9 where we vary the connec-
tivity (i.e. the friends number). The simulations shows
that the cooperative behavior is robust with respect to
the “friends” number up to a very small number ~ 5.
This result is consistent with the study on flocking phe-
nomena where the coordination birds behavior could be
explained by the existence of a topological interaction
with a small number of neighborhoods[Ballerini et al.,
2008].

To introduce the physical dynamics effects, we con-
sider an automata gas model moving from an origin to
a destination through a space containing two doors (cfr.
fig. 10). The automata perform the physical dynamics
described in the second section: finite volume effects
and local vision mechanism. The physical dynamics
is defined by the following parameters (cfr. eqs. (1,2)):
ry=m=1,v=.35,|0y| =1, ¢ =n/10and n = .1.
The social space and the visual radius are respectively
21y, and 57y, and the visual mechanism uses a rotation
velocity w = .87 and a friction coefficient &« = .5. The
automata perform the cognitive dynamics (7) based on
a double well utility potential using the information on

Figure 10. Automata gas model simulation: the automata have to
reach the destination on the right choosing between two doors. The
cognitive dynamics is based on the double well utility potential (13)
(k=1and Xg = 1/2), which depends on the absolute flux and
the crowding nearby the doors. The parameters are ¢ = .75 and
clp = .15, whereas the social temperatures are distributed on the
interval T; € [.7.1]. The left picture refers to a moderate incom-
ing flux and the automata cooperate choosing the bottom door. The
right picture refers to larger flux and the automata distribute equally

between the two doors.

the total flux ® = > v; and the crowding O nearby the
doors. The utility of the two choices is computed by
using the relations

C(I)A7C

Xac=Xo+ —5——
AC O+C1O§1,C+1

21

where the parameter ¢ measures the cooperation level
and c; models the automata aversion to enter in a
crowded door. The parameters are fixed during the sim-
ulations and we vary the flux from the source. The
evolution is periodic: i.e. the automata that enter the
area have the same cognitive state than the automata
that reach the destination area. The simulations show
a cooperative behavior if the incoming flux overcome
a well defined threshold and almost all the automata
choose the same door to reach the destination (see fig.
10 (left)). However if the flux is further increased the
occupation level near the door decreases the choice
utility, and the automata distribute again between the
two doors (see fig. 10 (right)). We remark that each
automaton has information only on the chosen door so
that there is no a simultaneous comparative evaluations
of utilities of the two possible choices.

In the same situation we have also simulated two com-
peting populations that have to cross the doors to reach
their destination. The automata use the information
of the net fluxes at the doors. By using the same
parameters as in fig. 10, we get a coordinate self-
organized solution that allows both the populations to
reach their destinations (see fig. 11 left). This solution
turns out to be robust even if we increase the incom-
ing fluxes. However both the cooperation parameter
c and the social temperature spread are critical for the
appearance of the cooperative behavior. Indeed if we
use a larger spread for the automata social tempera-
tures (T; € [.7 & .2]), the self-organized solution be-
comes unstable due to collisional effects and the au-
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Figure 11. Automata gas model simulation: two competing popula-
tion move into opposite direction to reach their destination choosing
between two doors. The cognitive dynamics is based on the double
well utility potential (13) which depends on the net flux at the doors.
The parameters are the same as in fig. 10. The left picture show the
appearance of a coordinate self-organized solution the populations
choose different doors. The right picture refers to population whose
social temperatures are spread in a larger interval T; € [.7 & .2];
so that the automata do not coordinate and tend to distribute equally
between the two doors, but a critical congested state is soon formed

at one door, due to physical collisions and finite volume effects.

tomata distribute between the two doors. But this is not
a stationary solution at the incoming flux levels used in
the simulations, and a critical congested state is soon
observed at one door (see fig. 11 (right)).

5 Conclusion

The automata gas is a very powerful model to sim-
ulate complex systems in which a cognitive behavior
has a relevant role in determining the global dynamical
states. In this space we have discussed the main fea-
tures of the model and we have considered some sim-
ple examples. The assumption of an adiabatic separa-
tion between the time-scales of the cognitive and phys-
ical dynamics, together with the possibility to prove a
generalized law of large numbers for interacting parti-
cles, allow to justify a mean field approach, that points
out the appearance of self-organized cognitive states.
The numerical simulations confirm that our approach
can be correctly applied in interesting situations. The
application to pedestrian dynamics modeling in urban
space, seems to be very promising even if a validation
procedure through experimental observations is still a
difficult problems.
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