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Abstract
In this paper we considered the technique for classi-

fication of different types of electroencephalogram ac-
tivity corresponded to different types of real and imag-
inary movement. We developed experimental design
and performed series of experiments on volunteers for
real and imaginary movements of hands and legs. We
proposed a system based on artificial neural networks
for classification of multiple human brain states corre-
sponding to different real and imaginary movements.
We provided testing and found optimal for this task
size of input signal and structure of artificial neural net-
work.
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1 Introduction
Interdisciplinary tasks such as studying of human

brain activity are of a great relevance nowadays. This
task lies in the field of combined neuroscience, physics,
mathematics and nonlinear dynamics. Brain itself
is commonly considered as a network with complex
structure and huge number of oscillatory elements —
neurons [Betzel, Medaglia, Pasqualetti, and Bassett,

2016; Hermundstad, Bassett, Brown et al., 2013; Ata-
soy, Donnelly, and Pearson, 2016]. Most ways for ob-
taining information about brain activity involve various
experimental methods and data including electroen-
cephalogram (EEG).
EEG is an experimental signal that originates from

sum of electric currents generated by a small group
of neurons in recording area. Since brain is a com-
plex oscillatory network, the signal that it generates,
namely EEG, also has complex structure. EEG signal
is characterized by complex time-frequency structure
with number of specific frequency ranges, oscillatory
patterns, heavy nonstationarity, significant noise com-
ponent and intermittent behavior [Sitnikova, Hramov,
Grubov et al., 2012; Koronovskii, Hramov, Grubov,
Moskalenko, Sitnikova, and Pavlov, 2016].
It is well-known that EEG dynamics in some fre-

quency ranges and forming of specific rhythms and
patterns are in strong correlation with functional state
of brain and body. Thus, studying of EEG struc-
ture along with recognition and classification of EEG
patterns is an important task for understanding fun-
damental mechanisms of brain. It also has quite
prospective applications in technics and medicine. One
of possible applications is brain-computer interface
(BCI) [Kawase et al., 2017; Spuler, 2017; Bowsher et
al., 2016; Chen et al., 2015; O’Doherty et al., 2011;
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Stacey et al., 2008].
The BCI is based on real-time recognition of char-

acteristic forms of activity in brain electrical (or mag-
netic) signals with their subsequent transformation into
computer commands for programs, devices, etc. At
present, the developed BCIs are used for 2D movement
control of a cursor [Wolpaw and McFarland, 2004],
partially speech synthesis [Birbaumer et al., 2000],
simple movement control [Ma et al., 2017], rehabilita-
tion [Daly, 2008], exoskeletons and robots control [Pe-
ternel et al., 2016]. The BCI operation is mostly deter-
mined by the operators possibility to generate and re-
produce stable patterns of cognitive activity, which then
can be transformed into control commands. Movement
activity produces one of the most specific and stable
patterns on brain activity signals, but it can be problem-
atic for BCI-prosthesis operators with motor dysfunc-
tions to perform some particular moves. In this context,
combining of motor execution with imagination of mo-
tor activity is promising approach for BCI [Vasilyev et
al., 2017].
The most important part of BCI is a system for clas-

sification of different types of brain activity, that can
be transformed into control commands for executive
device. There are plenty of techniques for analyzing
neurophysiological features of real and imaginary mo-
tor activity with the aim of their transformation into
controlling commands. For this purpose, one can use
methods based on registration of event-related poten-
tials [Basyul et al., 2015], techniques for isolation of
time-frequency structure of the signals [Wang et al.,
2013] and methods for restoring connections between
different brain areas using multichannel data [Hamedi
et al., 2016; Maximenko et al., 2017]. But one of the
most effective methods for classification are based on
use of artificial intelligence and machine learning [Ma,
Li, Yang et al., 2017; Quitadamo et al., 2017]. This
approach allows to develop an intelligent system for
classification with high sensitivity and selectivity. It is
especially important in case of electrical brain activity
where differences between several types of activity can
be very complex and unobvious.
In this paper we performed experiment with real and

imaginary movement of volunteers and developed a
new intelligent system for classification of multiple hu-
man brain states corresponding to different real and
imaginary movements. Our approach was based on
use of artificial intelligence methods. Developed sys-
tem was approved on classification of patterns corre-
sponded to real and imaginary movements on brain
electrical activity of volunteers.

2 Study Methods
2.1 Experiment
Twelve healthy volunteers including both males and

females, between the ages of 20 and 45 partici-
pated in the experiments. The experimental studies

were performed according to ethical standards of the
World Medical Association [World medical associa-
tion, 2000].
EEG signals were recorded with electroencephalo-

graphic recorder Encephalan-EEGR-19/26 (Medicom
MTD, Taganrog, Russia) with multiple EEG channels.
Monopolar registration method and classical “10-20”
electrode system with 19 recording electrodes and 2
reference electrodes were used in experiment. The
multi-channel EEG was recorded at 250 Hz sampling
rate and was filtered by a band pass filter with cut-off
points at 1 Hz and 100 Hz and a 50-Hz notch filter.
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Figure 1. Design of experiment: real movements of hand and leg
(a), imaginary movements of hand and leg (b), scheme of one exper-
imental session (c).

The experiment with real and imaginary movements
of volunteers had the design illustrated on Figure 1.
During real movement section of experiment volun-
teer was instructed to perform two types of movement:
to lift slowly right or left hand in the shoulder-joint
and to lift right or left leg by bending knee-joint as
shown on Figure 1a. During imaginary section vol-
unteer was asked to image the same types of move-
ment (see Figure 1b). The whole experiment was split
into 24 sessions, each session included 20 iterations of
real/imaginary movement for left/right hand/leg.
Structure of each session is illustrated on Figure 1c.

Each session started with short instruction in form of
text on monitor that told the volunteer which type of
movement he is asked to perform. After the instruc-
tion sound stimulus was presented; this sound implied
that volunteer should perform the asked type of move-
ment once within a reserved time interval ∆tm = 4
s. Then a pause with length of ∆tp = 2 s took place
to give the volunteer possibility to prepare for the next
iteration. Then sound stimulus was presented again
to start the next iteration, volunteer performed asked
movement and so on.
The whole experiment included 12 sessions of real
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movements – 3 for left hand, 3 for right hand, 3 for
left leg and 3 for right leg – and 12 analogous ses-
sions of imaginary movements. Sessions were pro-
ceeded in random order. The experiment started with
a 2-min background EEG recording and ended with a
2-min background recording. Each experiment lasted
for about 52 minutes. The experiments were performed
during the first half of the day in specially equipped
laboratory where the volunteer was sitting comfortably
and effects of external stimuli, e.g. external noise and
bright light, were minimized. Each of twelve volun-
teers was subjected to one full experiment.

2.2 Artificial Neural Networks
Artificial neural networks (ANN) find application in

wide range of tasks and are particularly effective for
ill-defined problems with unknown patterns and rela-
tions between input and output [Haykin, 1998], for
which the construction of models with classical meth-
ods is quite difficult. Traditionally, application of ANN
requires following steps: data preparation and forma-
tion of training set, selection of correct ANN structure,
ANN training, testing and simulation. Analysis of the
results of ANN application is performed after the train-
ing of ANN and in order to improve the performance
one may consider the change of ANN topology and/or
increase its computing abilities by correcting the train-
ing set and re-training.
Solution of the classification problem is one of the

most important applications of ANN and it commonly
occurs in studies related to EEG analysis. Construc-
tion of classifier based on ANN suggests splitting the
available data patterns, containing information about
the object/system, into a number of classes that define
the state of a given object/system.
In the case of brain activity studies the input

data is multi-channel EEG signals recorded during
real/imaginary movement experiment. To solve the
problem of classification one should test different types
of ANN and different types of data presentation. In
present paper we created a classifier with input val-
ues as EEG oscillatory patterns [Rabinovich, Varona,
Selverston, and Abarbanel, 2006] and output values as
types of movement during the experiment. We tested
different sizes of input EEG signals and different types
of ANN structure to find optimal combination with
highest classification capability.
We associated each EEG signal with class (type) of

the movement, which subjects performed during exper-
iment. The task of classifier was to successfully dis-
tinguish two classes corresponded to “left” and “right”
movements, for example, real movement of left hand
and real movement of right hand. The aim was to con-
struct four classifiers: for real hand movement, real leg
movement, imaginary hand movement and imaginary
leg movement. The value of the class is equal to 1 if
it’s related to “left” movement and is equal to 0 if it’s

related to “right” movement. Thus, the learning set in-
cluded input values (multichannel signals of set dura-
tion), and output values corresponded to the identified
classes of movements. The number of channels deter-
mined the number of inputs in ANN.

3 Results
The input values were multi-channel EEG signals (os-

cillatory patterns). The number of channels corre-
sponding to the scheme of recorded EEG data was 19.
For each channel, we took signals of certain duration to
use as input.
Choosing of size of input data may be important.

In case of very short input EEG signal some signif-
icant but obscure processes may be lost which will
decrease classification ability of ANN. On the other
hand, in case of very long input signal it may in-
clude fragments that have nothing in common with
real/imaginary movements, which also will have neg-
ative effect on classification accuracy.
As we described previously, volunteers had ∆tm = 4

s to perform the asked type of move. We assumed that
all movement-related EEG activity was concentrated
inside time interval of tm, so it is pointless to consider
EEG input signals longer than ∆tm. On the other hand,
observation during experiment showed that it took at
least 2.5 s for volunteers to perform their movements,
and thus input signal shorter than 2.5 s may lose some
important information.
In present paper we considered ANN classifier with

three different sizes of input data: 2.5, 3, 4 s. We pro-
vided learning of ANN with each size of input data and
results of classification are illustrated on Figure 2.
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Figure 2. Dependence of classification accuracy from size of input
data for: real hand movement (a), real leg movement (b), imaginary
hand movement (c), imaginary leg movement (d).

As Figure 2 shows there are no significant differences
in accuracy for different sizes of input data. For exam-
ple, classification accuracies for imaginary movements
of hands are 82% for 2.5 s input, 83% for 3 s input and
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85% for 4 s input (see Figure 2c). Nevertheless, accu-
racy for 4 s input data are the best in all cases, so this
size of input data was used in our ANN classifiers.
Another important task in construction of ANN classi-

fier is to choose an appropriate type of ANN. In present
paper we considered three popular types of ANN: lin-
ear network (LN), multi-layer perceptron (MP) and ra-
dial basis function (RBF). We tried to perform classifi-
cation of “left” and “right” movement classes with each
type of ANN. Results are presented on Figure 3.
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Figure 3. Dependence of classification accuracy from ANN type
for: real hand movement (a), real leg movement (b), imaginary hand
movement (c), imaginary leg movement (d).

As seen from Figure 3 RBF type of ANN showed
best accuracy in almost all cases – up to 90% for clas-
sification of imaginary leg movement. Worst results
were shown by LN – about 50-55% in all cases. MP
showed good results, for example, for classification of
real hand movement (90%), but in other cases accu-
racy is rather low (53% for real leg movement), so MP
cannot be considered as a reliable option for ANN clas-
sifier. In the end, the algorithm for construction of clas-
sifier based on ANN includes the following steps:

1. Formation of the training set that includes input
signals (EEG-data, oscillatory patterns) and output
values of real/imaginary hand/leg movement type
and segmentation of the training set for training,
inspection, test.

2. Selection of size of input data segment for optimal
classification accuracy.

3. Selection of ANN type and its topology, providing
training and evaluation of classification accuracy.

4. Testing of ANN and classification of EEG frag-
ments.

4 Conclusion
In this paper we considered the technique for classifi-

cation of different types of EEG activity corresponded
to different real and imaginary movements of hands and

legs. Developed classifier was based on ANN. We pro-
vided testing and found optimal for this task size of
input signal and structure of ANN.
The results of these studies appear promising for fur-

ther classification of other types of activity on EEG
signals. Furthermore, this approach is highly cus-
tomizable to individual features of volunteers which
promises its application in biofeedback systems.
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