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Abstract
We study the dynamics of a chiral particle obeyng

Weyl equation and coupled to a bosonic environment.
The model describes the dynamics of quasiparticles
in graphene sheets, in the presence of noisy controls,
simulating external electromagnetic quantum fields.
Wavepackets show Spin Separation and Zitterbewe-
gung at mesoscopic scales, which are suppressed in a
peculiar way by quantum fluctuations of the environ-
ment. Here we present some exact result.
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1 Introduction
The recent discovery that individual graphene sheets

can be isolated [14] has stimulated a renewed interest
in carbon-based materials. Indeed graphene has dis-
tinguished mechanical and electrical properties, as the

Figure 1. Spatial profile of the total density ρσ(r, t) The ρZB

component (consistent of the of diagonal part of ρσ(r, t))produces
a modulation of the total density in the region between two maximum
of spin separation.

large mobility, which makes it attractive for applica-
tions in nanoelectronics. Graphene is two-dimensional
carbon arranged in a honeycomb lattice. Due to the
symmetries of the lattice, the (nonrelativistic) ”effec-
tive mass” Hamiltonian for Quasi-Particles (QP) close
to the symmetry (Dirac) points of the Brillouin zone [2]
is formally identical to the relativistic Hamiltonian for
Quantum Electrodynamics in 2 dimensions. In a single
valley QP’s have a gapless linear energy-momentum
dispersion and their dynamics is described by the quan-
tum mechanical Weyl Hamiltonian for massles Dirac
fermions. For a graphene sheet lying in the x−y plane,
and subject to a uniform electric field in the y direction
E = E(t) ey the Hamiltonian reads

HW = v p̂·σ+eE(t) ŷ = v
[
p̂− e

c
A(t) ey

]
·σ (1)

where ŷ is the operator of the y-component of the QP
and E(t) = 1

c
∂A
∂t , A = A(t)ey being the vector pon-

tential in absence of magnetic field. Here σ is a pseu-
dospin operator, the eigenstates of σz corresponding to
the QP tight-binding wavefunctions on each sublattice
of the honeycomb structure (the physical spin is con-
served and we ignore it), and v is the Fermi velocity,
playing the role of the speed of light in the relativistic
version. QP’s are chiral due to spin-momentum cou-
pling: the hamiltonian expressed in terms of the vector
potential shows that quantum control of the pseudospin
dynamics is possible via electric fields coupling with
a QP coordinate. Therefore phototransport could be in
principle modulated using quantum control protocols
tipical of the quantum optics realm [4]. This roadmap
naturally extends to microscopic degrees of freedom
one of the most fascinating experimental breakthroughs
of the recent past, namely the observation of coherent
pseudospin dynamics in nanodevices based on super-
conductors [20] and semiconductors.



1.1 Spin separation and Zitterbewegung
The dynamics of isolated wave-packets of Weyl QP’s

shows many distinct features. Contrary to massive non
relativistic particles, wave-packets of Weyl QP’s from a
single helicity branch experience a very weak breadth,
due to the linear dispersion implying that each compo-
nent travels at the same velocity v. On the other hand
new phenomena appear for superposition of states from
different branches. Since the direction of the velocity
depends on the helicity such a wave-packet will sep-
arate in two opposite moving components (SS). Inter-
ference between them gives rise to ZB. This features
are usually discussed in the Heisenberg picture [8] in
which the equation of motion for the speed operator
are:

v̂ = i[r̂, H] = v ˆ⃗σ (2)

and for instance ZB is associated to a part rZB(t) of the
position operator oscillating in time with angular fre-
quency Ω(k) = 2v|k|, the energy splitting of two states
|kσk⟩ with the same k and opposite helicity. Instead
we use the Schrödinger picture, which is conveniently
generalized to an open system. For the representation
we use the chiral basis of the eigenstates of Eq.(1). The
density matrix in the laboratory frame is given by

ζL(t) =
∑

kσk′σ′

|kσk⟩⟨k′σ′
k′ | ζLkσk′σ′(0) e−iv(|k|σ−|k′|σ′)t

In order to calculate averages of interest we introduce
the operators Pσ =

∑
kσ |kσk⟩⟨kσk| projecting on

a well defined component (σ = ±1) of the helicity
σk. Any operator Â can be decomposed in ”diago-
nal” parts PσÂPσ and ”off diagonal” parts PσÂP−σ

these latter describing interference. In particular let-
ting Â = δ(r̂(t) − r) the average of the diagonal parts
represent the probability densities ϱσ(r, t) of two spin-
separated wave-packets, whereas the average of the in-
terference terms yields ϱZB(r, t), which is a spatial
modulation between the two wave-packets above, os-
cillating with time. The associated centroid is the aver-
age of the oscillating part of the position operator

⟨rZB(t)⟩ =
∑
kσ

Aσ,−σ(k) ζ
L
k−σ kσ(t)

Here
∑

k →
∫

dk
2π in the continuum limit (not al-

ways specified hereafter). The connection in k-space
associated to the chiral basis appears Aσσ′(k) =
i⟨σk|∇kσ

′
k⟩ = σσ′ tk/(2|k|), where the unitary vector

tk is such that {k/|k|, tk, z} is a left-handed reference
frame for the momentum space. Notice that the den-
sity matrix enters with elements diagonal in k and off
diagonal in the pseudospin index σ.

2 Model.
The control of coherent dynamics opens ports to

noise. In discussing the effect of the environment we
recall that for a massive particle with ohmic damp-
ing [10] the wave-packet breadth grows only logarith-
mically on time, reflecting decoherence due to the en-
vironment measuring the particle position r, while for
finite temperatures diffusive behavior is found in the
long time limit. We address the problem of noise by
coupling Weyl QP’s to an environment. To this end we
supplement the Weyl hamiltonian with a part describ-
ing a set of quantum harmonic oscillators coupled lin-
early to the coordinate operator ŷ of the QP, as in the
Caldeira-Leggett model [1] [21]

δH = −ŷ
∑
α

Cαxα +
∑
α

( p2α
2mα

+
mαω

2
α

2

)
x2
α

+ŷ2
∑
α

C2
α

2mαω2
α

(3)

The state of the system described by this hamiltonian
could be described by density matrix W (t); We are in-
terested only on the dynamics of quasiparticle. To this
end we consider the Reduced Density Matrix (RDM)
obteined tracing over the environment degree of free-
dom the total density matrix: ζ̂L(t) = Trα[W (t)]
The relevant information on the environment is pro-
vided by the spectral density associated to X , given by
JX(ω) = π

∑
α

c2α
2mαωα

δ(ω − ωα)[21].

2.1 Dynamics in the QP-supported frame
In order to study the dynamics we first rescale

the environment coordinates and momenta y′α →
cαyα/mαω

2
α and p′α → mαω

2
αpα/cα. Then we per-

form on the resulting Hamiltonian H′ a (polaron) trans-
formation, represented by the unitary operator U =
exp

(
−iŷ

∑
α p̂α

)
which shifts the positions to yα, now

referred to the QP position. The effective Hamiltonian
in this QP-supported frame, reads

H̃(p̂) = U H′ U† = v p · σ⃗ − σy v
∑
α

pα +

∑
α

( p2α
2µα

+
1

2
µαω

2
α y2α

)
(4)

Therefore the coupling of the QP position r with the
environmental X̂ in Eq.(3) is gauged away in favor of a
spin-boson like coupling of the pseudo-spin with envi-
ronmental momenta. The effects of the transformation
are fully defined by specifying the new spectral density

JP (ω) = π
∑
α

v2

2µαωα
δ(ω − ωα) =

v2

ω2
JX(ω) (5)

Notice that the operator p̂, which is still the conjugate
of r̂, is physically the total momentum of the system



and it is conserved. Therefore the dynamics is deter-
mined by the set of Hamiltonians HK = H̃(K) de-
pending parametrically on the eigenvalue K of p. Each
H̃K acts on a spin-boson system only, and the problem
is mapped in a spin-boson model, with conditional dy-
namics.
The evolution operator determined by the Hamilto-

nian (4) is given by U(t) =
∑

K |K⟩⟨K| ⊗ e−iHKt

and allows to express the simplified dynamics of the
full density matrix W(t) = UT W (t)U†

T in the QP-
supported frame. In view of the simplifications brought
in by the conditional dynamics it is convenient to elim-
inate the microscopic degrees of freedom of the modi-
fied environment, labeled by α̃, to obtain

ζ̂(t) = Trα̃[W(t)] =
∑
Kσ

|KσK⟩ ζ(K,K′)
σσ′ (t) ⟨K′σ′

K′ |

(6)
This RDM describes the dressed QP (polaron). It can
be decomposed in a set of 2×2 operators ζ(K,K′), each
acting in a sector (K,K′), and evolving independently.
They are structurally reminiscent to the RDM of the
spin-boson model, however the parametric dependence
on (K,K′) has non trivial features: for K ̸= K′ the
exact dynamics of ζ(K,K′) is deformed [6], and it is
not trace preserving.
Since the unitary transformation to the QP-supported

frame preserves both the QP coordinate r̂ and the
pseudo-spin, averages as the spin resolved densities
ϱσ(r, t) and ϱZB(r, t) can be calculated directly in the
QP-supported frame. In particular we will evaluate

ϱσ(r, t) =
∑

KK′ Tr[ |K⟩⟨K′| ζ(K
′,K)

σσ (t) δ(r̂− r)]

=
∑

KK′ ei(k−k′)·r ⟨σK|σK′⟩ ζ(K
′,K)

σσ (t)
(7)

⟨rZB(t)⟩ = −
∑
K

tK
|K|

ℜ[ζ(K,K)
+− (t)] (8)

In order to proceed we define sectors labeled
by (K,K′) and projected operators, for instance
Ŵ(K,K′) = ⟨K |Ŵ |K′ ⟩. Momentum conservation
ensures that they evolve independently, undergoing a
deformed dynamics

Ŵ(K,K′)(t) = e−iHKt Ŵ(K,K′)(0) e−iHK′ t

2.2 Master equation.
Tracing out the environment one obtains the reduced

operators ζ̂(K,K′) of the pseudo-spin Liouville space,
appearing in Eq.(6). They solve an exact equation
which can be written in a deformed interaction pic-
ture [6] as

ζ̃(KK′)(t+∆t)− ζ̃(KK′)(t) =

−
t+∆t∫
t

dt′
t′∫
t

dt′′ Trα̃

{[
H̃1(t

′),
[
H̃1(t

′′), W̃(KK′)(t′′)
]′]′}

where ∆t is a coarse graining time. Here H̃1(t)
(H̃′

1(t)) is the QP-environment coupling of Eq.(4) in
the interaction picture relative to the parameter K (K′).
Primed commutator, reflecting deformation of the dy-
namics, are defined as

[H̃1(t), X̃ ]′ = H̃1(t) X̃ − X̃ H̃′
1(t) (9)

At this stage an approximate closed equation for
ζ̃(KK′)(t) can be obtained by first assuming factor-
ized initial W̃(KK′)(0) = ζ̃(KK′) ⊗ weq, where weq

is the equilibrium density matrix of the environment,
and then following the same lines leading to the Bloch-
Redfield equation [4], which govern the dynamics in
the sector K = K′.
Deformation of the dynamics implies that, besides

the splitting of the helicity bands ≈ 2v|Q|, where
Q = (K + K′)/2, a new energy scale enters the
problem, related to q = K − K′. For a wave-
packet with a dispersion ∼ ∆ in in momentum space,
the variable q may have values ranging from ∆ to
zero, therefore the associated energy scale may van-
ish. As a consequence there will always be sectors
with non-secular deformed dynamics. This structure,
becomes transparent for noise with white power spec-
trum JP (ω) coth(βω/2) → 2Γ. In this limit the prob-
lem has an exact solution, which is very useful to cap-
ture the essential consequences of the deformed dy-
namics. In this case the exact master equation in the
Schrödinger picture for white noise becomes

∂t ζ
(KK′)(t) = L(Q,q) · ζ̂(KK′)(t)

L(Q,q) ζ̂ = −iv
[
Q · σ⃗, ζ̂

]
− iv2

[
q · σ⃗, ζ̂

]
+

−Γ
2 [ζ̂ − σy ζ̂(t)σy]

(10)

Notice here the presence of the anticommutator term
containing q. This term disappears for operators in di-
agonal sectors and Eq.(10) reduces to a standard Lind-
blad equation for a two-state atom with Bohr splitting
2v|Q|.

2.3 One dimensional wavepacket
We perform our calculation of dynamics of wave

packets only in the case of one dimensional wave pack-
ets. They are, of the form:

g(k⃗) =
A

(2πσ2
kx)

1/4
e

−(kx−kx0)2

4σ2
kx (11)

In order to understand motion of a one-dimensional
wave-packet in an arbitrary direction n, we now spec-
ify to this case the exact Master Equation for white
noise, Eq.(10). A convenient matrix form is obtained
using the decomposition ζ(KK′)(t) = 1

2

∑4
i=0 Ri(t)σi,

where {σi} = {I, σn, σt, σz} is a basis of the pseudo-
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Figure 2. Schematic plot of the behavior of the eigenvalues
z0,1 for SS (z2,3 for ZB) as given by Eq.(15) as a function
of vq (vQ). Imaginary parts (blue) vanish in the overdamped
regime 2vq < Γ (4vQ < Γ) wherea in the opposite limit
they behave as ∼ ±ivq (∼ ±ivQ). In this limit real parts
(green) are given by (Γ/2) whereas in the overdamped limit,
ℜz ∼ 0,Γ, the zero value being associated to the Zeno effect.

spin Liouville space. For each sector the master equa-
tion reads Ṙ = LR where

L ≡


0 −iv q 0 0

−iv qn −Γ c2 Γ sc 0
0 Γ sc −Γ s2 −2vQ
0 0 2vQ −Γ

 (12)

Notice that R0 = Tr[ζ(KK′)] and R1 = Tr[ζ(KK′)σn]
enter the spin separated densities, whereas R2 and R3

determine ϱZB . We concentrate on the explicit calcu-
lation of the dynamics of one dimensional wave packet
(Qt, qt = 0). In this case it is readily verified that for
longitudinal noise (ϕn = π/2) the result agrees with
the exact solution of sec. 3.1. Indeed noise does not
enter the components R0 and R1: the two imaginary
eigenvalues ±ivq of L lead to SS as for the isolated
QP. The other two eigenvalues, given by −Γ ± 2ivQ
yield damped ZB oscillations at the band splitting fre-
quency, decaying at a rate Γ, which agrees with the
proper limit of Eq.(14).
Instead for generic n all four eigenvalues have a non

vanishing real part. This indicates that both SS and ZB
have components ζ̂(K,K′) which are damped or even
overdamped.

3 Results
3.1 Exact solution for longitudinal noise
If we set initially Kx = 0 the dynamics in each

sector (K,K ′) involves the Hamiltonians of the form
HK = HKey . The helicity coincides with σy and it is
conserved, since [HK , σy] = 0. Therefore eigenstates
of the helicity are unaffected by longitudinal noise. Dy-
namics in each sector is given by

ζ(KK′)
σσ′ (t) = ⟨σy |Trα̃

[
e−iHKt W (KK′)(0) eiHK′ t

]
|σ′

y ⟩

Since it acts on its eigenstates the spin operator σy con-
tained in each Hamiltonian can be replaced by a num-
ber, HK |σy ⟩ = (ivKσ +Hσ) |σy ⟩, where Hσ is the
Hamiltonian (4) for K = 0 and for σx → σ = ±1.
Using the cyclic property of the partial trace we obtain

ζ(KK′)
σσ′ (t) = e−i(Kσ−K′σ′)vt·

Trα̃
[
W (KK′)(0) eiHσ′ te−iHσt

] (13)

We see that for diagonal elements the effect of the
environment cancels, expressing helicity conservation.
As a consequence spin resolved probability densities
ρσ(r, t) evolve as in absence of the environment, fully
displaying spin separation.
Instead off diagonal elements are affected by the pres-

ence of the environment. Assuming factorized initial
conditions the partial trace for σ′ = −σ can be written
as

Trα̃
[
·
]
= ζ(KK′)

σ−σ (0) e−D(t)

where D(t) is a decay factor describing pure dephas-
ing. Therefore longitudinal noise determines a suppres-
sion of interference effects in a superpositions of spin
states and of ZB oscillations. For an oscillator environ-
ment one finds explicitly

D(t) =

∫ ∞

0

dω

π
JP (ω) coth

βω

2

1− cosωt

ω2
(14)

for an arbitrary environment spectral density.

3.2 Transverse white noise
If noise is transverse to the motion, n ≡ x, the Lind-

blad operator Eq.(12) is again reducible, the eigenval-
ues being

z0,1 = −Γ
2 ± 1

2

√
Γ2 − (2vq)2

z2,3 = −Γ
2 ± 1

2

√
Γ2 − (4vQ)2

(15)

where z0,1 enter the SS dynamics and z0,1 determine
ZB. The common feature of both pairs is that for in-
creasing Γ they exhibit a crossover from an “under-
damped” (secular) regime, where ℑzi ̸= 0, to an “over-
damped” (non secular) regime where eigenvalues are
real and negative (see Fig.2). Notice that for large Γ
two of the four real eigenvalues vanish as z ∝ v2/Γ,
and the corresponding dynamics is “frozen”. This is
a manifestation of the Zeno effect determined by the
continuous quantum measurement of the particle by the
noisy field.
The fact that sectors such that ζ̂(K,K′) has Zeno-like

eigenvalues exist, means that there may be overdamped
modes of the wave-packet motion The consequences
are apparent in the behavior of SS, shown in Fig. 3,
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Figure 3. Marginal probability density ϱx(x, t) for a 1D-
wavepacket of well defined chirality. Here y is expressed in units
of the lattice distance a and per t = 0, 5, 10, 12 in units of
104 a/v. For Γ/∆ = 0.5 (upper panel) the coherent peak and
the incoherent tail are shown. For Γ/∆ = 2 (lower panel) the in-
coherent peak is frozen close to the origin (notice the different spatial
scale of the two figures).

where we consider a gaussian wave-packet with ini-
tial width ∆ in the distribution of Kx. Spin-resolved
marginal probability densities are given by the simpli-
fied expression

ϱσx(y, t) =

∫
dq

2π
e−

q2

8∆2 χσσ(q, t) e
iqy (16)

where the variable Q has been integrated out. Modes
corresponding to q < Γ/(2v) are overdamped, there-
fore we expect a strong noise regime (∆ < Γ/v) where
all modes are overdamped, whereas only part of them
are in the weak noise regime (∆ > Γ/v).
The dynamics of a wave-packet prepared in an eigen-

state of chirality is illustrated in Fig. 3. In the weak
noise regime (upper panel) wave-packets show a co-
herent component moving with constant velocity (±v)
which disappears in a time t ∼ 1/Γ. They leave behind
an inelastic tail, due to the presence of overdamped
modes. For larger Γ the inelastic processes prevail, all
the modes are overdamped (Fig. 3, lower panel) and
the peak represents an incoherent mixture of both chi-
rality eigenstates. Wave-packets prepared in a superpo-
sition of eigenstates of the chirality are shown if Fig. 4
at a fixed time. In the weak noise regime they show
SS, the two separated coherent peaks keeping their ini-
tial width, independently of Γ. For strong noise spin-
separation is suppressed and the wave-packet shows a
single incoherent peak “frozen” at the initial position.
ZB oscillations are derived starting from the eigenvec-

tors corresponding to the second pair of eigenvalues
Eq.(15). In particular the ZB part of the position op-
erator Eq.(7) is given, for a gaussian wave-packet and
suitable initial conditions, by the simple form

⟨yZB(t)⟩ = e−
Γ
2 t

∫
dK

2K

e−
K2

2∆2

√
2π∆

z3e
iωt − z2e

−iωt

z3 − z2

where ω =
√
Γ2 − (4vK)2 (Fig. 5). In the weak

damping regime Γ < 4vQ, oscillation disappear only
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Figure 4. Marginal probability density ϱx(x, t) for t = 5 ·
104 a/v, for a superposition of chirality states. Curves for
Γ/∆ = 0, 0.2, 0.5, 1 (blue) show SS. ForΓ/∆ = 2, 5 (green)
SS is suppressed.

0 0.5 1 1.5 2
-100

-50

0

50

100

Figure 5. ZB component of the average position ⟨y(t)⟩ZB vs.
time (104 a/v units) for transverse white noise. Here a super-
positon of chirality states with dispersion ∆ = 10−4/a about
K0 = 50∆. Weak noiseΓ < ∆ has no effetto on the signal (grey
curve) whereas for larger values Γ/(4vK0) = 0.025, 0.25, 1
⟨y(t)⟩ZB decays exponentially (black) and eventually reaches the
overdamped regime (red).

for times t > 2/Γ, more slowly than for longitudi-
nal noise. Instead small values of |Q| determine over-
damped modes in ZB.
We notice that the qualitative effect on SS and ZB of

transverse and longitudinal noise is reversed: the for-
mer determines strong SS suppression, while the latter
produces stronger dephasing of ZB oscillations. This is
a consequence of the anisotropic coupling of noise in
δH, Eq.(3). It is related to the conservation of σz and it
is reminiscent to the properties of certain nanodevices
for quantum computation of exhibiting optimal operat-
ing points. On this basis we may argue that the same
conclusions hold for general spectral density JP (ω) of
the environment.
Finally, since ZB oscillations are overdamped only if
Γ > 2v|Q|, in the opposite regime 2v|Q| ≫ Γ ∼ ∆
noise will affect mainly SS. In these conditions weakly
damped ZB oscillations may coexist with overdamped
SS, or at least with a substantial incoherent tail of the
wave-packet. This conclusion depends on the low-
frequency behavior of the spectral density, holding for
instance in the ohmic case JP (ω) ∼ ω.

4 Further remarks and conclusions
We have discussed the dynamics of one-dimensional

wave-packets in the presence of noise, however many



qualitative conclusions can be extended to an arbitrary
wave-packet with any finite spread ∆n of Kn. For in-
stance, since small values of q, corresponding to over-
damped modes (except for longitudinal noise), are al-
ways present, SS will show an incoherent tail.
An appealing property of ZB in graphene is that, con-

trary to the case of electron-positron superpositions,
ZB oscillations of the wave-packet extend over a meso-
scopic distance. For ⟨Q⟩ ≫ ∆ the amplitude of
⟨r(t)⟩ZB scales as ∼ 1/⟨Q⟩. Although it is suppressed
for wave-packets centered in the vicinity of the Dirac
points, ⟨Q⟩ ≪ ∆, for suitable values of ⟨Q⟩ it may be
several hundreds of lattice spacings a large. This is en-
couraging for possible experiments aiming at observing
ZB in graphene. Our results suggest that this is still
true for wave-packets with ⟨Q⟩ ≪ min[∆,Γ/(4v)],
even in the presence of an incoherent tail.
A general feature of the problem is expressed by the

transformation Eq.(5). It shows that the pseudo-spin
dynamics is very sensitive to low-frequency fluctua-
tions of the environment.
We finally remark that our model shows that the ef-

fect of noise on the dynamics of QP’s is completely
described by the effect on the dynamics of the pseudo-
spin. This is also true for controls operated by elec-
tromagnetic fields. This fact may be used for studying
quantum control of photocurrents in chiral many body
system. In this perspective it is worth stressing that
effective control of the pseudo-spin dynamics by elec-
tromagnetic fields also opens ports to noise, which will
have strongly anisotropic effects on the QP’s motion.
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