
PHYSCON 2015, Istanbul, Turkey, 19–22 August, 2015

UNI-DIRECTIONAL SYNCHRONIZATION AND
FREQUENCY DIFFERENCE LOCKING INDUCED BY A

HETEROCLINIC RATCHET
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Abstract
A system of four coupled oscillators that exhibits

unusual synchronization phenomena has been ana-
lyzed. Existence of a one-way heteroclinic network,
called heteroclinic ratchet, gives rise to uni-directional
(de)synchronization between certain groups of cells.
Moreover, we show that locking in frequency differ-
ences occur when a small white noise is added to the
dynamics of oscillators.
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1 Introduction
Phase oscillators are used as approximations for

the phase dynamics of coupled limit cycle oscilla-
tors in the case of weak coupling [Kuramoto, 1984;
Pikovsky et al., 2001; Hoppensteadt and Izhikevich,
1997]. They exhibit synchronization and cluster-
ing phenomena [Kuramoto, 1984; Sakaguchi and Ku-
ramoto, 1986], even if coupling function consists of
the first harmonic only. If the second harmonic of the
coupling function is considered, it is possible to ob-
serve switchings between different clusterings as a re-
sult of an asymptotically stable robust heteroclinic cy-
cle [Hansel et al., 1993]. It is known that heteroclinic
cycles are not structurally stable but they may exist ro-
bustly for coupled systems. This is due to the existence
of robust invariant subspaces for certain coupling struc-
tures that may support robust heteroclinic connections
that are saddle-to-sink on the invariant subspaces and
form a heteroclinic cycles [Krupa, 1997; Ashwin and
Field, 1999; Aguiar et al., 2011]. Existence of robust
heteroclinic cycles or more generally heteroclinic net-
works in a system of three and four globally coupled
phase oscillators have been analyzed in [Ashwin et al.,

2008] and in [Ashwin et al., 2006], where an extreme
sensitivity phenomenon to detuning of natural frequen-
cies has been observed. Namely, oscillators loose syn-
chrony even for very small detuning of natural frequen-
cies. [Karabacak and Ashwin, 2010] have considered
the third harmonic of the coupling function and ob-
served one-way heteroclinic networks, which are called
heteroclinic ratchets. A heteroclinic ratchet is a hetero-
clinic network that, for some axis, contains trajectories
winding in one direction only. Heteroclinic ratchets
give rise to extreme sensitivity to detuning of certain
sign. Namely, synchronization of a pair of oscillators
is possible only when the natural frequency of a cer-
tain oscillator is larger than the other. We call this phe-
nomenon uni-directional (de)synchronization.
In the sequel, we identify a heteroclinic ratchet for a

system of four coupled oscillators in Section 2. Al-
though the system is less complicated than the orig-
inal ratcheting system considered in [Karabacak and
Ashwin, 2010], it exhibits more complicated dynam-
ics: uni-directional synchronization between groups of
oscillators, explained in Sections 3 and 4. We believe
that this is due to the asymmetric structure in the cou-
pling (see Figure 1).

2 A Model of Four Coupled Oscillators That Sup-
ports Heteroclinic Networks

Consider the following well-known model of coupled
phase oscillators:

θ̇i = ωi +
K

N

N∑
j=1

cijg(θi − θj). (1)

Here, θi ∈ T = [0, 2π) denotes the phase of oscillator
i and ωi is its natural frequency. The connection matrix
{cij} represents the coupling. cij = 1 if oscillator i re-
ceives an input from oscillator j and cij = 0 otherwise.



Since g(·) is a 2π-periodic function, it can be
written as a sum of Fourier harmonics: g(x) =∑∞

k=1 rk sin(kx+ αk). Without loss of generality, we
may set K = N and r1 = −1 by a scaling of time.
Let us choose the following coupling function with two
harmonics only:

g(x) = − sin(x+ α1) + r2 sin(2x) (2)

The model (1) is used as the approximate phase dy-
namics of weakly coupled limit cycle oscillators, and
the weak coupling gives rise to a T1 phase-shift sym-
metry in the phase model (1). Hence, the dynamics of
(1) is invariant under the phase shift

(θ1, θ2, . . . , θN ) 7→ (θ1 + ε, θ2 + ε, . . . , θN + ε)

for any ε ∈ T. Below, this symmetry is used to reduce
the dynamics to an (N − 1)-dimensional phase differ-
ence system.
Let us consider the coupled phase oscillator system

(1) with the coupling structure given in Figure 1. This
gives rise to the following system:

θ̇1 = ω1 + g(θ1 − θ2) + g(θ1 − θ3)

θ̇2 = ω2 + g(θ2 − θ1) + g(θ2 − θ4)

θ̇3 = ω3 + g(θ3 − θ2) + g(0)

θ̇4 = ω4 + g(θ4 − θ1) + g(θ4 − θ2).

(3)

Defining phase difference variables as φ1 := θ1 − θ2,
φ2 := θ2−θ4 and φ3 = θ3−θ4, we obtain the following
dynamical system for phase differences:

φ̇1 = ω13 + g(φ1 + φ3 − φ2) + g(φ1)

− g(φ3 − φ2)− g(0)

φ̇2 = ω24 + g(−φ1 − φ3 + φ2) + g(φ2)

− g(−φ3 − φ1)− g(−φ2)

φ̇3 = ω34 + g(φ3 − φ2) + g(0)

− g(−φ3 − φ1)− g(−φ2).

(4)

ωij denotes the detuning between oscillator i and os-
cillator j, namely ωij = ωi − ωj .
We first assume identical oscillators, that is

ω1 = · · · = ω4 = ω =⇒ ωij = 0 ∀i, j. (5)

Oscillators with different natural frequencies will be
considered in Section 3.
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Figure 1. An asymmetric coupled cell system: this gives the cou-
pled system of form (3).
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Figure 2. Two balanced colorings of the coupled cell system in Fig-
ure 1. These give rise to 2-dimensional invariant subspaces X1 and
X2 of the system (4).

2.1 Invariant Subspaces
The assumption that the oscillators are identical

makes it possible to use the balanced coloring method
[Stewart et al., 2003] to obtain invariant subspaces of
the system (3). A coloring of cells in a coupled cell
system is called balanced if cells with identical color
receives the same number of inputs from cells of any
given color. A balanced coloring gives rise to an in-
variant subspace obtained by assuming that the cells of
same color have identical states. The converse of this
statement is also true. Namely, for a given coupling
structure, a coloring is balanced if the corresponding
subspace is invariant under any system having that cou-
pling structure. Therefore, the invariant subspaces ob-
tained by the balanced coloring method are robust un-
der the perturbations that preserve the coupling struc-
ture. For an introduction to this theory, see [Golubitsky
and Stewart, 2006].
Using the balanced coloring method the invariant sub-

spaces of the coupled cell system given in Figure 1 can
be found as in Table 1. Using the above-mentioned
phase difference reduction, the corresponding invari-
ant subspace in T3 for the system (4) are also listed
in Table 1. Note that for the system (4), there are only
two 2-dimensional invariant subspaces, namely X1 and
X2. Balanced colorings for these invariant subspaces
are given in Figure 2. The invariant subspaces X1 , X2

and their intersection X3 can support a robust hetero-
clinic cycle (see [Ashwin et al., 2011] for robustness
criteria of heteroclinic cycles).



Balanced Invariant subspaces of the system (3)

colorings on T4 and system (4) and on T3

{1|2|3|4} X0 = T4

X̄0 = T3 (whole space)

{1|2|34} X1 = {θ ∈ T4 | θ2 = θ4}

X̄1 = {φ ∈ T3 | φ2 = 0} (φ1 − φ3 plane)

{12|3|4} X2 = {θ ∈ T4 | θ1 = θ3}

X̄2 = {φ ∈ T3φ1 = 0} (φ2 − φ3 plane)

{12|34} X3 = {θ ∈ T4 | θ1 = θ3, θ2 = θ4}

X̄3 = {φ ∈ T3φ1 = φ2 = 0} (φ3 axis)

{134|2} X4 = {θ ∈ T4 | θ1 = θ3 = θ4}

X̄4 = {φ ∈ T3φ1 = φ3 = 0} (φ2 -axis)

{1234} X5 = {θ ∈ T4 | θ1 = θ2 = θ3 = θ4}

X̄5 = {(0, 0, 0)} (origin)

Table 1. Balanced colorings of the coupled system given in Fig-
ure 1. The corresponding invariant subspaces for the system (3) and
the corresponding reduced invariant subspaces for the system (4) are
given.

2.2 Existence and Stability of a Heteroclinic
Ratchet

A heteroclinic ratchet (first defined in [Karabacak and
Ashwin, 2010]) is a heteroclinic network that contains
a heteroclinic cycle winding in some direction and does
not contain another heteroclinic cycle winding in the
opposite direction. To be precise, a heteroclinic cy-
cle C ⊂ TN parametrized by x(s) (x : [0, 1) → TN )
is winding in some direction if there is a projection
map P : RN → R such that the parametrization x̄(s)
(x̄ : [0, 1) → RN ) of the lifted heteroclinic cycle C̄ ⊂
RN satisfies lims→1 P (x̄(s)) − P (x̄(0)) = 2kπ for
some positive integer k. A heteroclinic cycle winding
in the opposite direction would satisfy the same condi-
tion for a negative integer k (see [Ashwin and Karaba-
cak, 2011] for general properties of heteroclinic ratch-
ets).
As discussed above, the system (4) may have a robust

heteroclinic network on the invariant subspaces X1 and
X2. Such a heteroclinic network should be connecting
saddles on X3 = X1 ∩X2. Reducing the equations in
(4) to X3 and considering identical natural frequencies,
we get

φ̇3 = g(φ3)− g(−φ3). (6)

This system is Z2-equivariant, and therefore it can ad-
mit a codimension-1 pitchfork bifurcation of the zero
solution under some nondegeneracy conditions. The
saddles emanating from this bifurcation are on X3

and they are of the form p = (0, 0, p3) and q =
(0, 0 − p3). The value p3 can be obtained by solving
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Figure 3. Phase portraits of the system (4) on invariant subspaces
X̄1 (a) and X̄2 (b) are illustrated for parameters given in (8). Red
lines indicate robust heteroclinic trajectories. Thick red lines are
the winding heteroclinic trajectories. The robust heteroclinic ratchet
formed by these winding and non-winding heteroclinic trajectories
and the saddles p and q is shown in (c).

g(p3)− g(−p3) = 0 as

p3 = cos−1

(
cosα1

2r2 cosα2

)
. (7)

In order to show that there exist heteroclinic connec-
tions between p and q we use the simulation program
XPPAUT [Ermentrout, 2002]. We identify a hetero-
clinic ratchet for the parameter values

α1 = −5, r2 = 0.15 (8)

(see Figure 3). On X1, the heteroclinic ratchet con-
tains a non-winding trajectory and a trajectory winding
along +φ1 and −φ3 directions (see Figure 3a). On X2,
it contains a non-winding trajectory and a trajectory
winding along +φ2 direction (see Figure 3b). These
four connections and the saddles p and q form a hetero-
clinic ratchet (see Figure 3c). For the parameters given
in (8), p can be found as (0, 0, 0.3315). Considering
the Jakobian of (4) at p, we can find the eigenvalues of
the saddle p as λ

(p)
1 = −0.3112, λ(p)

2 = 0.2967 and
λ
(p)
3 = −0.0636. Similarly, the eigenvalues of q =

−p = (0, 0, 0.3315) can be found as λ
(q)
1 = 0.3130

and λ
(q)
2 = −0.3276 and λ

(q)
3 = −0.0636. These

eigenvalues of p and q correspond to the eigenvectors
v1 = (1, 0, 0) ∈ X1, v2 = (0, 1, 0) ∈ X2 and v3 =
(0, 0, 1) ∈ X3. A heteroclinic cycle is attracting if the
saddle quantity, defined as the absolute value of the ra-
tio between the product of the eigenvalues correspond-
ing to the expanding connections and the product of the
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Figure 4. A solution of the system (4) converging to the heteroclinic
ratchet. Initial states are chosen as (2, 1, 0.5). The solution shows
the peculiar property for heteroclinic cycles that the residence time
near equilibria increases as t → ∞, before φ1 and φ2 get locked
at zero due to the precision errors.

eigenvalues corresponding to the contracting connec-
tions is smaller than 1 [Melbourne, 1989]. Hence, we
can conclude that the heteroclinic ratchet for the sys-
tem (4) with parameters given in (8) is asymptotically

stable since the saddle quantity
∣∣∣∣λ(p)

2 λ
(q)
1

λ
(q)
1 λ

(p)
2

∣∣∣∣ = 0.9532 is

less than one.
A solution of (4) converging to the heteroclinic ratchet

can be seen in Figure 4. The increase in the residence
time near equilibria is typical for a solution converging
to a heteroclinic network. Winding of φ1 and φ3 occur
at the same time, respectively in positive and negative
directions, due to the winding heteroclinic trajectory on
X1 (see Figure 3a). Winding of φ2 occur in the positive
direction due to the winding heteroclinic trajectory on
X2 (see Figure 3b). Since at each turn the solution gets
closer to the equilibria p and q, after some time, φ1 and
φ2 get locked at zero due to the precision errors. Note
that, the invariant subspaces X1 and X2 serve as bar-
riers, and therefore no solution can pass through them.
For this reason the solution winds in φ1 and φ3 direc-
tions only one time. Since winding in −φ3 direction
occurs together with the winding in +φ1 direction, this
also happens only one time. However, these barriers
can be broken by noise and/or detuning of natural fre-
quencies leading to the uni-directional synchronization
phenomenon.

3 Uni-directional Synchronization in the Model
We say that oscillators i and j are (frequency) syn-

chronized if the observed frequency differences

Ωij = lim
t→∞

|θLi − θLj |
t

, (9)

is equal to zero. Here θLi ∈ R is the lifted phase vari-
able for θi ∈ T. It is know that coupled oscillators can
get frequency synchronized when the distance between
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Figure 5. Uni-directional synchronization with respect toω13. The
main graph shows the frequency differences Ω13, Ω24 and Ω34 for
(3) with parameters given in (8) as a function of detuning ω13 when
ω24 = ω34 = 0. Oscillators are frequency synchronized when
ω13 ≤ 0 and the synchronization fails for oscillator pairs (13) and
(24) whenever ω13 > 0. The insets show time evolution of the
phase differences φi for a positive value of ω13.
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Figure 6. Uni-directional synchronization with respect toω24. The
frequency differences Ω13, Ω24 and Ω34 for (3) with parameters
given in (8) are shown as a function of detuning ω24 when ω13 =
ω34 = 0. Oscillators are frequency synchronized when ω24 ≤ 0
and the synchronization fails for the oscillator pair (24) whenever
ω24 > 0.

their natural frequencies, namely |ωij | := |ωi − ωj | is
small enough. If frequency synchronization of oscil-
lators i and j occurs only when a specific one of the
oscillators has greater natural frequency, namely for
a certain sign of ωij , we say that synchronization is
uni-directional. Uni-directional synchronization phe-
nomenon has been shown to occur for oscillator pairs
when an asymptotically stable heteroclinic ratchet ex-
ists in the phase space [Karabacak and Ashwin, 2010;
Ashwin and Karabacak, 2011].
For the system (4), we investigate the effect of detun-

ings ω13, ω24 and ω34 on the synchronization of oscil-
lators, respectively in Figure 5, 6 and 7. Due to the
winding connections in the heteroclinic ratchet, uni-
directional synchronization occurs for detunings ω13

and ω24. However, because of the connection winding
both in +φ1 and −φ3 directions, a positive detuning
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Figure 7. Bi-directional synchronization (the usual case) with re-
spect to ω34. The frequency differences Ω13, Ω24 and Ω34 for
(3) with parameters given in (8) are shown as a function of detuning
ω34 when ω13 = ω24 = 0. Oscillators are frequency synchro-
nized when |ω34| is small enough and the synchronization fails for
the oscillator pair (34) for large values of |ω34|.

Detuning Natural Winding Observed

Direction Frequencies Direction Frequencies

+ω13 ω+, ω, ω, ω +φ1,−φ3 Ω+,Ω+,Ω,Ω+

+ω24 ω, ω+, ω, ω +φ2 Ω,Ω+,Ω,Ω

+ω34 ω+, ω, ω+, ω 0 Ω,Ω,Ω,Ω

Table 2. The effect of detunings on the synchronization of oscil-
lators for the system (4). These can be obtained from Figures 5, 6
and 7. Negative detunings have not been considered as they have no
effect. ω+ (Ω+) represents a number slightly larger than ω (Ω).

ω13 leads to synchronization of oscillators 1, 2 and 4.
This is because θ1 − θ3 ∼= −(θ3 − θ4) =⇒ θ1 ∼= θ4.
The synchronized groups of oscillators for each detun-
ing case are given in Table 2. It is interesting that the
oscillators 1, 2 and 4 get synchronized for a positive
detuning of ω13, although the space {θ ∈ T4 | θ1 =
θ2 = θ4} is not one of the synchronization spaces ob-
tained by the balanced coloring method in Section 2.1.
Hence, it is not an invariant subspace.

4 Locking in Frequency Differences
Noise induced uni-directional desynchronization of

oscillators has been observed in [Karabacak and Ash-
win, 2010] for a coupled system admitting a hetero-
clinic ratchet. Here, we show that existence of a het-
eroclinic ratchet for the system (4) leads to a locking
in frequency differences when a small noise is applied.
Figure 8 shows a solution of the system (4) under white
noise with amplitude 10−12. The noisy solution ex-
hibits approximately equal number of windings in φ1

and φ2 directions. This is because the noise is homoge-
neous and the invariant subspace X1 (resp. X2) divides
any ε-ball around the equilibrium q (resp. p) into two
regions of attractions of equal volume for the winding
and non-winding trajectories. On the other hand, the
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Figure 8. A solution of the system (4) for parameters given in
(8) with no detuning and with additive white noise (amplitude=
10−12).

number of windings in φ1 and −φ3 directions are ex-
actly the same because of the structure of the hetero-
clinic ratchet in Figure 3.
As a result, the solution gives rise to the following

frequency locking between frequency differences:

Ω13 = Ω24 = −Ω34. (10)

This is in agreement with the simulation results given
in Figure 8. Therefore, the observed oscillator frequen-
cies Ωi := limt |θLi (t)|/t are in the following form:


Ω1

Ω2

Ω3

Ω4

 =


Ω+ δ
Ω
Ω+ δ
Ω+ 2δ

 , (11)

where δ is a positive number. This type of a result can-
not be seen directly from the connection structure of
the coupled system, and is a consequence of the par-
ticular heteroclinic ratchet that the system admits. Al-
though the noise induces synchronization of oscillators
1 and 3, the balanced coloring method explained in
Section 2.1 does not give {θ ∈ T4 | θ1 = θ3} as an
invariant subspace.

5 Conclusion
We have analyzed a system of four coupled phase os-

cillators. The existence of an asymptotically stable het-
eroclinic ratchet gives rise to uni-directional synchro-
nization of certain groups of oscillators and induce a
particular locking in the frequency differences of oscil-
lators when small amplitude white noise is introduced
to the system. These phenomena also lead to frequency
synchronization of some oscillators, that can not be
found by using the balanced coloring method, therefore
does not correspond to any synchrony subspace.
For future works, the relation between the connec-

tion structure and possible synchronization groups can



be studied. Although the synchronization groups can
not be inferred from the coupling structure directly, the
coupling structure serves to create invariant subspaces
on which heteroclinic ratchets can be supported. For
this reason, the coupling structure plays an indirect role
on the existence of possible synchronization groups.
Another direction could be to study bifurcations of het-
eroclinic ratchets that result in winding periodic orbits
on torus. This can explain the effect of small detunings
of natural frequencies on the observed frequencies in a
complete way.
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