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Abstract: Mathematical models of a flexible autogiro rotor have been carried out. Their
approximate analytical solutions have been obtained. Software allowing one to simulate and
study a rotor dynamics has been created. Major physical features on the forced flexible
oscillations of the rotor have been investigated. The results obtained have successfully been
applied to designing the A-002 and the A-002M autogiros rotor.
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1. INTRODUCTION

At present due to new advanced technologies autogiros
(AGs) are being created across the world (Belyash et al.,
2005). Therefore, in order to predict operational features
of a wind-milling rotor it is of significance to advance the
theory of auto-rotation. As against helicopter main rotor
an auto-rotating rotor is revolved under the influence of
an air stream rush. Thus, if a regime of operation of
the wind-milling rotor will be changed its angular rate
will also be changed. Some assumptions of the analytical
models of auto-rotation applied earlier do not allow one to
investigate entirely an AG rotor.

The problem posed can effectively be solved due to com-
puters having great capacities. In progress of Somov and
Polyntsev (2005) the purpose of the paper are modeling
and research of nonlinear dynamics and robust stabiliza-
tion by a flexible autogiro rotor.

2. MODEL OF AN AUTOGIRO ROTOR

The rotor consists of two blades attached to a hub by
means of teeter hinge allowing the rotor to execute flap-
ping. Let us consider a blade element with distributed
massmr.Motion of the element with respect to fixed refer-
ence frame is presented by equation mr r̈σ = R+F, where
rσ is radius-vector regarding reference mark of the Earth
frame assumed to be fixed, and vectors F and R present
external and internal distributed forces, respectively. The
motion of flexible blades is considered. The aircraft body
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Fig. 1. Kinematic scheme

and a rotor-head are assumed to be absolutely rigid. Ele-
mentary forces are supposed to be applied in a mass center
of the element. At the notation σ = Ω+ δ̇+ω an absolute
acceleration vector r̈σ is appeared as

r̈σ = v̇ + ω × v + ω̇ × ra + ü + σ̇ × (r + u)
+ ω × (ω × (ra + r + u))
+ Ω× (Ω× (r + u)) + δ̇ × (δ̇ × (r + u))
+ 2 ω × ((δ̇ + Ω)× (r + u)) + 2σ × u̇
+ 2 δ̇ × (Ω× (r + u)).

(1)

Here v is vector of the AG speed; ω is vector of angular
rate by the AG body; ra is radius-vector of the hub in
respect to the AG mass center; Ω is vector of angular rate
of the blade element including auto-rotation and flapping;
δ̇ is vector of the control blade angular rate; u is vector of
the blade flexible displacement.

After introducing reference frames (see Fig. 1) and trans-
formations (1), elementary torques are defined and inte-
grated through the lengths of the both blades from r0



(radius of a blade root) up to R (radius of the rotor).
As total torques regarding corresponding axes of hinges
should be equal to zero, one can obtain the autorotation
equation

ψ̈LJcR = −MA1 −MA2 +Mi1 +Mi2, (2)

and flapping equation
β̈LJpR = MF1 −MF2 −Mj1 +Mj2, (3)

where ψL is an azimuth angle of arbitrary blade;

βL is an angle of flapping;

JcR and JpR are rotor’s moments of inertia in respect to
auto-rotation and to flapping axes, respectively;

MA1, MA2 and MF1, MF2 are torques of internal forces
causing a wind-milling and a flapping, respectively by the
first and second blades;

Mi1, Mj1, Mi2 and Mj2 are torques of inertia forces by
both blades.

3. PROBLEMS OF AUTOROTATION

Describing the dynamics of the wind-milling rotor, the
equations (2) and (3) are essentially nonlinear. This fact
is concerned with nonlinear dependencies of aerodynamic
forces upon attack angles, Mach and Reynolds numbers,
and elastic deformations; appearance of effects by flow
non-stationarity; non-uniformity of mass and rigidity dis-
tribution on blade’s length etc. To add, the blades are
under the influence of non-symmetrical air stream, and
rotor angular velocity is not remained constant per a rotor
turn even if there is a steady-state auto-rotation. Hence,
local angles of attack are significantly changed through
the azimuths. With a view to illustrate, Fig. 2 shows
distribution of the local angles of attack αr upon a rotor
disc during auto-rotation of a rotor of a AG performing
nosing-up. The chart has been predicted numerically, the
arrow shows a flight direction (FD).

As a rule, main rotor is designed so that aeroelasticity
has got insignificant effect on its dynamical properties. As
is usual, blade’s deformations of bending are insignificant
and fundamental mode acceptably describes motion of
blades (Johnson, 1983). Nevertheless, it is required that
blade flutter, divergence and resonant oscillations be stud-
ied, since it is importation for AG because its rotor angular
velocity is not constant.

It is well known that aerodynamics of a main rotor is
rather complicated topic (Mil’ et al., 1966a; Boyd et al.,
2002). Even if a rotor operates in helicopter regime and
there is a level flight, aerodynamic effects are not station-
ary. Computational modeling of rotorcraft aerodynamics
is still in its infancy and lags well behind the computa-
tional capabilities used for fixed wing (Boyd et al., 2002).
Modern techniques including methods of Computational
Fluid Dynamics and Discrete Vortex method do not allow
one to solve all problems concerned with investigation of
unsteady dynamics of a wind-milling rotor. Finally, all
these methods demand only numerical computations.

The classical theory with simplified aerodynamics using
empirical results of the vortex theory and experiments per-
mits to use analytical studies (Mil’ et al., 1966a). Practice

Fig. 2. Distribution of the local attack angles

shows that many special features of the dynamics can be
investigated by means of such an approach. In the case un-
der consideration the field of induced velocities is expressed
using empirical functions. This expression permits to allow
for typical features of the varying induced flow versus
rotor tip-speed ratio µ = Vxg cosαR/(ωrR), where αR is
rotor angle of attack; ωr is value of the rotor angular rate
averaged per one rotor turn. Taking into account redistri-
bution of induced velocities own to curvilinear motion of
an aircraft (Mil’ et al., 1966a; Braverman and Vayntroob,
1988), local induced velocity is written as

vi = vim[b+ (pz sinψL + px cosψL)r̄];

b ≡
√

1, 5 r̄ f1(µ) + (1 + ar̄ cosψaL)f2(µ),
(4)

where f1(µ) and f2(µ) are coefficients indicating contribu-
tions of axis-symmetrical law that is typical for low tip-
speed ratios and linear law (according to Glauert hypoth-
esis); a is gradient of the linear distribution of induced
velocities upon the rotor disk; pz and px are correcting
terms allowing for the redistribution because of curvilinear
motion of an aircraft and rotor control angular position
change; vim is a mean value of induced velocities; ψaL is
angle of an ”air azimuth” of a blade; r̄ = r/R, and r is a
blade-element radius.

4. ANALYTICAL SOLUTION

While the equations of steady-state auto-rotation and
flapping are solved and integral characteristics of the rotor
are determined in level flight the following assumptions are
accepted:
• rotor angular rate is constant and equal to the aver-

aged value ωr;
• flapping angles and angles between flow and the rotor

disc are low;
• blade chord and pitch are equal to values of equal

untwisted untapered blade;
• influence of radial flow upon aerodynamic forces is

negligible;
• tip sections of blades do not generate lift due to effect

of tip losses;



• the lift coefficient of the blade section is determined
by linear dependence on local attack angle;

• the profile-drag coefficient of the blade section is equal
to its average value.

The flapping angle is presented by the Fourier series as a
function of the azimuth angle ψL, terminating the series
after terms of first harmonic since higher terms seem to be
insignificant, see Mil’ et al. (1966a). Hence, flapping angle

βL = a0 − a1 cosψL − b1 sinψL. (5)
An equation of steady-state auto-rotation is derived as
quadratic regarding a normed axial speed of motion x =
Vxg sinαR/(ωnR). The approximate model is in rather
close agreement with numerical computations and practice
in the scope of its application.

For example, the polar of the A-002 autogiro rotor is
presented in Fig. 3, where CyR and CxR are lift and drag
coefficients, respectively. The polar was evaluated both
numerically and analytically by (5) with (4) (Polyntsev,
2003a,b,c; Somov and Polyntsev, 2003, 2004). Fig. 4 shows
relations of a rotor thrust on angular rates predicted and
observed during wind-milling of the A-002 autogiro rotor.

5. DYNAMICS OF FLEXIBLE ROTOR

In order to define rotor-head loads and assess influence
of blade flexibility upon rotor dynamics an equation of
flexible oscillations has been derived. The blades in the
plane of flapping have been modeled as beams with non-
uniform distribution of parameters upon length. In the
considered system with a low structural damping, allowing
for dissipation of energy leads to insignificant quantitative
corrections if the oscillations are far from resonance (Don-
doshansky, 1965). Additionally, due to taking into account
an aerodynamic damping (Mil’ et al., 1966b) actual ampli-
tudes of deflection will not be significantly changed even
if the oscillations are close to resonance. The equations of
the flexible oscillations during level flight, ignoring terms of

Fig. 3. Polar of the A-002 autogiro rotor

Fig. 4. A trust of the A-002 autogiro rotor

higher order of smallness, have the form of two-dimension
boundary problem

[EJxy
′′(t, r)]′′ − [Ny′(t, r)]′ +mrÿ(t, r) = X, (6)

[EJyx
′′(t, r)]′′ − [Nx′(t, r)]′ +mrẍ(t, r) = U. (7)

Here y(t, r) and x(t, r) are displacements of a blade el-
ement in the plane of flapping and rotation respectively
with standard notations ()′ ≡ ∂/∂r and (˙) ≡ d()/dt; the
functions

N ≡ q1ẏ + q2y + q3; X ≡ q4y + q5; U ≡ q6x+ q7

and for denotations Sα ≡ sinα; Cα ≡ cosα;

βc ≡ βL + ac; c ≡ r + y0Cactg βc; d ≡ ψ̇2
LS2βc/2;

e ≡ 2ψ̇Lẋ; f ≡ ψ̇Lβ̇L; h ≡ 2ψ̇Lẏ; g ≡ β̇2
L + ψ̇2

LC
2
βc

;

the functions q1 = 2mrβ̇L; q2 = mr(β̈L − d);

q3 = RizL +mr[gc− (fSβc + ψ̈LCβc)x− eCβc ];

q4 = mr[β̇2
L + ψ̇2

LS
2
βc

]; q6 = −mrψ̇
2
L;

q5 =RiyL −mr[c(β̈L + d) + x(ψ̈LSβc − fCβc)] + eSβc ;

q7 =RixL +mr[(h+ fc− ψ̈Ly)Sβc + (ψ̈Lc+ fy)Cβc ];
y0 is vertical distance between flapping hinge and cross
point of blades’ axes; EJx and EJy are the blade-element
rigidities; ac is rotor coning angle; RiyL and RizL are
components of distributed external force in the blade
reference frame.

To solve the boundary problem (6)–(7) the Bubnov-
Galerkin method has been used as the method of given
forms (Morozov et al., 1995). Vector of the blade flexible
displacement is presented as

uiL = {
n∑

j=1

g(j)η(j);
n∑

j=1

f(j)δ(j); 0},

where η(j) and δ(j) are unknown amplitudes of oscillations
for mode j in planes of rotation and flapping, respectively;
g(j) and f(j) are corresponding functions of natural mode
shape. After transformations one can achieve the equations
of forced oscillations for two-blade rotor

δ̈(j) + p2
yjδ

(j) =
Ayj

myj
; η̈(j) + p2

xjη
(j) =

Axj

mxj
, (8)



Fig. 5. The normed blades’ bending modes

where pyj = (Cyj/myj)1/2, pxj = (Cxj/mxj)1/2 are free
bending frequencies;

generalized forces

Ayj =
∑
s

∫
f(j)s Xsdr; Axj =

∫
[g(j)

1 U1 − g(j)
2 U2]dr;

equivalent mass

myj =
∑
s

∫
mr[f

(j)
s ]2dr; mxj =

∑
s

∫
mr[g

(j)
s ]2dr

and generalized rigidities

Cyj =
∑
s

∫
{EJx[(f(j)s )′′]2 + Ns[(f

(j)
s )′]2} dr;

Cxj =
∑
s

∫
{EJy[(g(j)

s )′′]2 + Ns[(g
(j)
s )′]2}dr,

and index s is number of a blade.

It is seen that a rotor have damping properties. The
physical sense of these properties is as follows:
• the rate of flexible displacements results in change of
local attack angles so that an additional aerodynamic force
damps the oscillations;
• the direction of external force vector is changed so that
damping components are increased;
• occurrence of flapping and auto-rotation whose centrifu-
gal forces damp the oscillations.

The equations (8) are nonlinear. This fact complicates
investigation of a wind-milling rotor because flexible os-
cillations of the rotor effect on flapping and auto-rotation.
Nekrasov (1964) recommends that such equations should
be integrated numerically using given forms of free oscil-
lations of blades. This approach allows one to take into
account nonlinear dependencies that are essential to define
aerodynamic forces. Advantages of this approach are: pos-
sibility to take into account blade twist and taper, to allow
for aerodynamic damping more exactly and possibility to
simulate flexible oscillations during regimes of unsteady
auto-rotation.

If initial conditions δ(j)(t0) and δ̇(j)(t0) for (8) are un-
known they are set arbitrarily, for example equal to zero.
For a steady motion the oscillations become steady within
some revolutions (Mil’ et al., 1966a; Nekrasov, 1964), i.e.
the deformation amplitudes become equal to each other

Fig. 6. The deformation coefficients upon azimuth

Fig. 7. The resonant diagram of the A-002 rotor

for the same azimuths with accuracy 10−3R (Nekrasov,
1964). With a view to illustrate special features the rotor
forced oscillations the calculations were carried out for the
A-002 autogiro rotor. The mode shape functions have been
defined by well-known software MSC NASTRAN. The spe-
cial feature of the considered beam pinned in the middle is
presence of symmetric and skew-symmetric forms. Fig. 5
presents 4 first shape modes in the flapping plane, exclud-
ing fundamental mode. Fig. 6 presents dependencies of so
called deformation coefficients δ̄(j) ≡ δ(j)/R of first and
second modes upon azimuth. Obviously, free frequencies
of the second and third modes are close to each other —
see Fig. 7, where the resonant diagram is presented. Here
ωrmax is maximal value of the rotor angular rate for the
mode of axial auto-rotation.

Since oscillations of the first mode are stand out with
frequency close to double frequency of rotor revolution
the most dangerous for the considered rotor is resonant
coincidence of the second-harmonic frequency with free
frequency py1 of first mode. This phenomenon leads to
the most significant growth of oscillatory amplitudes.
The same reason caused the fact that it is necessary to



avoid resonant coincidence of the first-mode free bending
frequency of a rotor in the rotation plane with angular rate
of the rotor.

6. AUTOGIRO DYNAMICS WITH A FLEXIBLE HUB

An option of the A-002 autogiro is equipped with a rather
new type of a rotor-head invented by A. Tatarnikov and
O. Polyntsev, patent RU 2281885C1. Here blades of main
rotor are fully articulated and the both blades have got a
common flapping hinge. Flexible beams restrict flapping
and lag motions effected about axes of individual hinges.
Such a construction allows AG to have a number of flight
modes characterized by various ranges of loads. Flexible
elements permit the hub to increase a bearing strength
from the view of flapping bending moments. A centrifugal
stiffening effect also occurs. It is a special interest for this
AG with a collective pitch control which leads to essential
change in the rotor angular rate.

Based on the elaborated mathematical models and soft-
ware the controlled wind-milling rotor simulation have
been carried out. As an example, Fig. 8 presents the rotor
angular rate ψ̇L(t) and the deformation amplitude on first
mode δ(1)(t) obtained during simulation of a rotor spin-up.

7. ROBUST CONTROL

As well-known, a helicopter Nesterov loop performing
is not a unique phenomenon. The authors considered
special features of this rather sight manoeuver by a AG.
Elaborated software (Kalmykov et al., 2002a,b) allows one
to research the AG spatial motion at different flight modes,
for instance dynamics of a main rotor pre-rotation, take-
off run, take-off, climb, flying down with and without
engine work, gliding, pancake, landing and landing run,
the engine failure, pitch-down, other manoeuvers and
unsteady regimes. There is also a possibility to define
loads acting on the AG elements at different unsteady and
transient modes using control stick movements.

Fig. 8. The rotor rate and the blade deformations

Fig. 9. The A-002 autogiro in flight, view 1

Fig. 10. The A-002 autogiro in flight, view 2

As simulation results were stored up, an optimization of
many flight modes was performed and this fact supports
the improvement of aircraft dynamical features and in-
crement of flight safety. Principal problems on a robust
stabilization (Somov, 2001; Somov et al., 2003; Matrosov
and Somov, 2003) of the AG flexible rotor were studied.
This research was carried out associated with a ground
physical experimental research and identification of the
blade parameters by the AG test natural flights.

In order to approve developed techniques two AGs have
designed and built: two-seat aircraft in 1997 and three-seat
vehicle in 2000. The AGs have been equipped with flight
recorders obtaining data from the tensometer systems to
define actual loads on the rotor pylon and mechanical
control system. There is a rather good accordance of eval-
uated parameters with experimental results, for example
see Fig. 4. Fruitful comparisons have been made between
evaluated parameters and wind-tunnel tests performed by
NACA (Polyntsev, 2003b). The results have been applied
at design a main rotor of Russian A-002 and A-002M au-
togiros. These aircraft were tested in flight and presented
at the Moscow Aero-Space salon, see Fig. 9 and Fig. 10.

8. CONCLUSIONS

The mathematical models describing dynamics of auto-
rotation and flapping of the wind-milling rotor, were elab-
orated. The approximate analytical solutions has been
obtained within standard parametrization. Software prod-
ucts allowing one to simulate rotor dynamics have been
created. Major special features of forced flexible oscilla-
tions of the rotor in the flapping and rotation planes have
been studied. The mathematical models have successfully
been applied to design the A-002 and the A-002M auto-
giros main rotor.



Principal problems on a robust control and stabilization
of the AG flexible rotor were studied and associated both
with a ground physical experimental research and with
natural flights.
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