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Abstract
The generalized synchronization of the complex net-

work consisting of nodes being the chaotic systems via
the auxiliary system approach is studied here. More
specifically, the applicability of the auxiliary system ap-
proach to detect the generalized synchronization in the
complex network consisting of unidirectional coupled
chaotic systems in the cyclic chain is investigated. Such
a complex network has the so-called ring topology. It is
shown that the auxiliary system approach is useful for
this purpose. The presented analysis is supported by the
numerical simulations as well.
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1 Introduction
Complex networks have been studied within many dif-

ferent branches of science [Chen et al., 2014]. Complex
network (CN) structure is usually represented the graph
consisting of nodes (vertices) coupled by links (edges).
Many real-world and man-made systems can be de-
scribed by complex networks, e.g. Internet, World Wide
Web, metabolic networks, biological neural networks,
collaboration networks, food webs, electric power grids
[Khramenkov et al., 2019] etc. Traditionally, complex
networks were studied via classical graph theory and
random graph theory introduced by [Erdös and Rényi,
1960], nevertheless, these basics were significantly ex-
tended during the last two decades. Furthermore, there
has been an increasing interest in the synchronization of
coupled systems as well. The synchronization is a sig-
nificant phenomenon in nature an as such has been stud-
ied by many scientists. Indeed, it is one of the simplest
but still very important types of the collective dynam-

ics of the interconnected systems. Studies of the identi-
cal (complete, full) synchronization of complex systems
were started by the papers [Fujisaka and Yamada, 1983;
Pikovsky, 1984] and the analysis of the synchronization
phenomena between the chaotic coupled systems was
rapidly started thanks to the paper [Pecora and Carroll,
1990]. In case of the identical synchronization (IS), the
states of the interconnected systems to be synchronized
should mutually converge each to other. The so-called
master-slave synchronization [Pecora and Carroll, 1990]
is used in analog/digital communication for the chaotic
masking, see [Čelikovský and Lynnyk, 2016] and the
references therein.

Besides the IS approach, many other kinds of syn-
chronizations of the interconnected systems have been
introduced recently, such as: phase synchronization
(PS) [Rosenblum et al., 1996], generalized synchro-
nization (GS) [Rulkov et al., 1995; Kocarev and Par-
litz, 1996], projective synchronization [Mainieri and
Rehacek, 1999], lag synchronization (LS) [Rosenblum
et al., 1997], ε-synchronization [Plotnikov and Frad-
kov, 2019], etc. The quality and the speed of the syn-
chronization of the coupled systems depend not only
on the structure of the network but also on the pres-
ence of different types of disturbances in the communi-
cation channels, e.g. the limited-band data erase [An-
drievsky, 2016], time delays [Klinshov and Nekorkin,
2017; Rehák and Lynnyk, 2019; Rehák and Lynnyk,
2019], noise [Moskalenko et al., 2017], quantization
[Andrievsky et al., 2017; Rehák and Lynnyk, 2019] etc.

The general knowledge about different types of syn-
chronization between coupled chaotic systems and com-
plex networks can be found in a comprehensive review
[Boccaletti et al., 2002] and the books [Chen and Dong,
1998; Boccaletti et al., 2018].

The present paper is devoted to the GS approach. GS is
characterized by the existence of the functional relation-
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Figure 1. Directed complex networkC10 with a ring topology.

ship between the interconnected units. The GS of the
unidirectional coupled systems has been first introduced
by [Afraimovich et al., 1986]. Later, in [Rulkov et al.,
1995], the notion of the GS was coined and the GS be-
tween two unidirectional connected units was detected
using the mutual false nearest neighbors method. In ad-
dition, in [Abarbanel et al., 1996], the so-called auxiliary
system approach to detect the GS was introduced. In this
context, the main contribution of the present paper is the
study of the generalized synchronization phenomenon of
a class of complex network where all nodes are identi-
cal chaotic systems with different control parameters and
initial conditions. The motivation of the current research
is to show that the auxiliary system approach can be used
to detect the generalized synchronization phenomena in
the complex network with unidirectional coupling be-
tween nodes and ring topology. More specifically, the
complex network studied here consist of the nodes be-
ing the so-called generalized Lorenz system (GLS). It
was already shown in [Čelikovský and Chen, 2005] that
two GLS’s, though both being three-dimensional sys-
tems, with the master-slave structure can be identically
synchronized using the single scalar connection only.
The identical synchronization in complex network with
bidirectionally connected nodes being the GLS with the
same control parameter and different initial conditions
was obtained in [Čelikovský et al., 2007]. Moreover, the
robustness in the dynamical complex networks with dif-
ferent topologies was rigorously studied in [Čelikovský
et al., 2013].

In such a way, the present paper will continue the re-
search started in [Čelikovský et al., 2013], namely, it
will address the detection of the generalized synchro-
nization in complex network having the ring topology.
It will show that in the case, when every node of the
unidirectional complex network has different behaviors,
the auxiliary system approach allows detecting the GS
phenomenon. In other words, the novelty of this paper
is the testing the applicability of the auxiliary system ap-
proach to unidirectional coupled systems with chain con-
nections. Note, that in auxiliary system approach, the
number of auxiliary systems is equal to the total number
of the nodes in the analyzed complex network.

The rest of the paper is organized as follows. Some
facts about complex networks and synchronization phe-
nomena are introduced in the next section. Preliminaries
about generalized Lorenz system and the synchroniza-
tion in the complex networks consisting of the nodes be-
ing the GLS are introduced in Section 3. Section 4 re-

peats some knowledge about auxiliary system approach
used later on to detect the GS regime in the directed
cyclic complex networks. Verification of the detection
method via numerical simulations is provided in Section
5. Conclusions and outlooks are given in the final sec-
tion.

2 Synchronization in Complex Networks
2.1 The generalized Synchronization

The generalized synchronization (GS) is a kind of syn-
chronization, for which there exists a functional relation-
ship between coupled systems. To be more specific, con-
sider two different unidirectional interconnected systems
or two similar systems with a different control parame-
ter (parameters). These systems are given by the vector
fields f and g, where g includes the coupling

η̇ = f(η) (1a)
˙̂η = g(η̂, η). (1b)

Here, η ∈ Rn and η̂ ∈ Rm denote the states of the drive
(master) system and the response (slave) systems [Par-
litz, 2012]. Systems (1a) and (1b) are synchronized if
there exists a continuous function Φ : Rn 7→ Rm map-
ping the states of the drive into the state space of the re-
sponse system. The properties of this transformation Φ
do not depend upon the initial conditions in the basin of
attraction of the chaotic attractor [Rulkov et al., 1995].
The orbits of the overall system lie in a subspace of the
full state space Rn⊕Rm. Systems (1a) and (1b) are said
to be mutually GS if

lim
t→∞

(
η̂(t)− Φ(η(t)

)
= 0. (2)

Furthermore, the necessary and sufficient condition of
the GS is the existence of the asymptotically stable limit
set of the response system [Kocarev and Parlitz, 1996].

2.2 The Identical Synchronization of Networks
The identical synchronization (IS) of the master-slave

configuration (1) is the particular case of the GS when Φ
equals to the identity transformation.

Next, let us introduce the IS for a more general con-
figurations forming the complex network (CN). Namely,
consider the complex network having N identical nodes
being nonlinear sytems. Each node is described by

η̇i = f(ηi) +

N∑
j=1

ajiφ
(
ηi, h(ηj), L

)
, (3)

where ηi = (η1, η2, ..., ηn, )
> ∈ Rn is the state vec-

tor of node i, i = 1, . . . , N , L = (l1, l2, . . . , ln)> is
the vector of coupling gains, h(·) is a scalar synchro-
nizing output of each system, φ is nonlinear coupling
with φ(η, h(η), L) ≡ 0 ∀η, L and A = (aij)i,j=1,...,N
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Figure 2. Block scheme of the auxiliary system approach to detect
GS of the unidirectional coupled nonlinear oscillators proposed by
[Abarbanel et al., 1996]. Here, N1 is a drive (master) system, N2 is
a response (slave) system and N2’ is auxiliary system which is a copy
of the response system N2. N2 and N2’ are driven by the same signal.

is the so-called adjacency matrix that has no loops, i.e.
i 6= j. Here, aij is not always equal to aji, because the
graph is directed, i.e. the adjacency matrix A may be
nonsymmetric. Without any loss of generality one can
set aii = 0 ∀i ∈ {1, 2, . . . , N}, due to the above as-
sumption that φ(η, h(η), L) ≡ 0 ∀η, L. Network (3) is
said to be identically (asymptotically) synchronized if,
∀i, j ∈ {1, 2, . . . , N}:

lim
t→∞

(
ηi(t)− ηj(t)

)
= 0. (4)

Definition 2.1. The CN (3) is said to be synchronizable
if there exists an integer µ ∈ {1, 2, . . . , N}, such that
for every σ ∈ {1, 2, . . . , N} there exists a sequence of
integers {κ1, . . . , κl} satisfying

κ1 = µ, κl = σ, aκ1,κ2
= · · · = aκl−1,κl

= 1.

If the above integer µ is unique, then the node with num-
ber µ is called the master of CN (3). The synchroniz-
able network is called minimal, if removing any connec-
tion makes it not synchronizable. Obviously, a minimal
synchronizable network always has a master [Čelikovský
et al., 2013].

In other words, the synchronizable network is related
to a directed graph that contains rooted directed spanning
tree, where the root is a master. Moreover, if a complex
network is a rooted directed spanning tree, then the CN
is a minimal one.

2.3 Directed Cyclic Complex Network
Complex network (CN) with the topology described

by the cycle (circle) graph is called cyclic complex net-
work (CCN). In computer networks theory this kind of
topology is usually called the ring topology. This kind
of CN consists of some number of nodes connected in a
closed chain. The CCN with N nodes will be denoted
Cn. The number of links in CCN equals the number of
nodes. Every node in the CCN has obviously the degree
(number of connected links to the node) equal to 2.

A directed cyclic CN (DCCN) is the directed version
of CCN. Here, all links are being oriented in the same
direction. DCCN has uniform in-degree (number of in-
coming links into each node) 1 and uniform out-degree
(number of outgoing links emanating from each node)
1. Adjacency matrix A of DCCN is a cyclic matrix (i.e.,
each its row and column has precisely one nonzero en-
try). Fig. 1 shows a DCCN C10 consisting of ten nodes.

In [Čelikovský et al., 2013] it was noted that the DCCN
is always synchronizable, but never minimal.

One can expect that if any (D)CCN subnetwork of a
given general CN is synchronized then so can be whole
CN. This clearly motivates the study of (D)CCN.

3 Generalized Lorenz Systems and Their Identical
Synchronization in Complex Networks

The complex network with nodes being the generalized
Lorenz system (GLS) is studied here. GLS generalizes
the classical Lorenz system containing GLS as a partic-
ular case with some specific parameters choice.

Definition 3.1. [Čelikovský and Chen, 2002] The fol-
lowing general nonlinear system of ordinary differential
equations in R3 is called GLS:

ẋ =

[
A 0
0 λ3

]
x+

 0
−x1x3
x1x2

 , A =

[
a11 a12
a21 a22

]
(5)

where x = [x1 x2 x3]>, λ3 ∈ R, and A has the eigen-
values λ1, λ2 ∈ R, such that

−λ2 > λ1 > −λ3 > 0. (6)

GLS is said to be nontrivial if it has a solution that goes
neither to zero nor to infinity nor to a limit cycle.

The inequality (6) among the eigenvalues of the approx-
imate linearization of GLS at the origin corresponds
the well-known Shilnikov’s conditions of the existence
of chaos near homoclinic orbits of the saddle-point
[Shilnikov, 1968; Shilnikov et al., 1993]. A canonical
form of GLS is introduced by the following theorem.

Theorem 3.2. [Čelikovský and Chen, 2002] For the
nontrivial GLS (5)− (6), there exists a linear change of
coordinates, z = Tx transforming (5) into the following
generalized Lorenz canonical form (GLCF]:

ż =

λ1 0 0
0 λ2 0
0 0 λ3

 z + cz

0 0 −1
0 0 −1
1 τ 0

 z , (7)

where z = [z1, z2, z3]>, c = [1,−1, 0], τ ∈ (−1,∞).

The parameter τ plays important role of the single scalar
bifurcation parameter, while remaining parameters has
only the qualitative influence being eigenvalues of the
approximate linearization of GLS at the origin. These
qualitative parameters are just required to satisfy robust
condition (6), so that fine numerical tuning may be done
using the single scalar parameter τ only. As a conse-
quence, GLCF enables to generate rich collection of the
parameterized chaotic behaviors [Čelikovský and Chen,
2002]. Furthermore, let us review yet another canonical
form of GLS given by the following theorem.



146 CYBERNETICS AND PHYSICS, VOL. 8, NO. 3, 2019

Figure 3. The topology of the three-nodes directed cyclic complex
network with three additional auxiliary nodes N1′, N2′ and N3′

using for the detection of the GS regime.

Figure 4. Synchronization error of 10-node complex network with
ring topology and directional coupling (top subfigure). Synchroniza-
tion error between permanent and auxiliary nodes in a directed cyclic
complex network (bottom subfigure). The topology of this complex
network it shown at Fig. 1.

Theorem 3.3. [Čelikovský and Chen, 2005] GLS is
state equivalent to the following system, further referred
to as the GLS observer canonical form (GLSOCF):

dη

dt
=

 (λ1 + λ2)η1 + η2
−λ1λ2η1 − (λ1 − λ2)η1η3 − (τ+1)

2 η31
λ3η3 +Kτη

2
1

 , (8)

Kτ =
λ3(τ + 1)− 2τλ1 − 2λ2

2(λ1 − λ2)
. (9)

where η = [η1, η2, η3]>. The corresponding smooth co-
ordinate change and its inverse are

η =

 z1 − z2
λ1z2 − λ2z1

z3 − (τ+1)(z1−z2)2
2(λ1−λ2)

 , z =


λ1η1+η2
λ1−λ2
λ2η1+η2
λ1−λ2

η3 +
(τ+1)η21
2(λ1−λ2)

 .

Note, that GLSOCF contains only four parameters,
where λ1,2,3 are the eigenvalues of the system lineariza-
tion (7) and control parameter τ enables fine chaos
tuning. Furthermore, , when viewing η1 = x1 =
z1 − z2 as the output, GLSOCF resembles the well-
known linearizable by output injection form. As a con-
sequence, GLSOCF provides the master-slave synchro-
nization of two coupled GLS’s using only scalar signal
η1 [Čelikovský and Chen, 2005]. Moreover, GLSOCF
enables the synchronization of the pair of bidirectionally
coupled GLS’s, as shown by the following theorem.

Theorem 3.4. [Čelikovský et al., 2013]. Consider the
CN formed by the pair of bidirectionally coupled systems
in GLSOCF (8)−(9) having the states η, η̂ and outputs
η1, η̂1:

dη

dt
=

 (λ1 + λ2)η1 + η2
−λ1λ2η1 − (λ1 − λ2)η1η3 − (τ+1)

2 η31
λ3η3 +Kτη

2
1

 (10)

+ a21

( (λ1 + λ2)η1
−λ1λ2η1 − (λ1 − λ2)η1η3 − (τ+1)

2 η31
Kτη

2
1


−

 (λ1 + λ2)η̂1
−λ1λ2η̂1 − (λ1 − λ2)η̂1η3 − (τ+1)

2 η̂31
Kτ η̂

2
1


+

 l1(η1 − η̂1)
l2(η1 − η̂1)

0

),

dη̂

dt
=

 (λ1 + λ2)η̂1 + η̂2
−λ1λ2η̂1 − (λ1 − λ2)η̂1η̂3 − (τ+1)

2 η̂31
λ3η̂3 +Kτ η̂

2
1

 (11)

+ a12

( (λ1 + λ2)η̂1
−λ1λ2η̂1 − (λ1 − λ2)η̂1η̂3 − (τ+1)

2 η̂31
Kτ η̂

2
1


−

 (λ1 + λ2)η1
−λ1λ2η1 − (λ1 − λ2)η1η̂3 − (τ+1)

2 η31
Kτη

2
1


+

 l1(η̂1 − η1)
l2(η̂1 − η1)

0

),
where l1,2 < 0 are synchronizing gains and let the solu-
tion of (10) with a21 = 0 is bounded. Then it holds:

1. for a12 = 0, a21 = 1 or a21 = 0, a12 = 1, and for
all gains l1,2 < 0, one has limt→∞(η(t)−η̂(t)) = 0
globally and exponentially;

2. for a12 = 1, a21 = 1, and for every bounded re-
gion of initial conditions of system (10)−(11), there
exist sufficiently large gains l1,2 < 0 such that
limt→∞(η(t)− η̂(t)) = 0.
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Note, that (10) and (11) are clearly in the form of CN (3)
having the adjacency matrix

A =

[
0 a12
a21 0

]
.

The synchronizing connections are the expressions in the
large round brackets multiplied by a12 and a21.

Next, consider CN consisting ofN nodes of GLSOCF:

 η̇i1η̇i2
η̇i3

 =


(λ1 + λ2)ηi1 + ηi2

−λ1λ2ηi1 − (λ1 − λ2)ηi1η
i
3−

(τ+1)
2 (ηi1)3

λ3η
i
3 +Kτ (ηi1)2



+

N∑
j=1

aji



(λ1 + λ2 + l1)(ηi1 − η
j
1)

(−λ1λ2 + l2)(ηi1 − η
j
1)−

(λ1 − λ2)(ηi1 − η
j
1)ηi3−

(τ+1)
2 ((ηi1)3 − (ηj1)3)

Kτ ((ηi1)2 − (ηj1)2)


, (12)

with a possibly non-symmetric binary adjacency matrix

A =


a11 a12 · · · a1N

a21
. . . · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

 .

Being the particular case with N = 2, Theorem 3.4 sug-
gests a general hypothesis that the synchronization be-
tween coupling nodes of CN (12), at least semi-globally,
does not depend on the topology of its connections, as
long as the corresponding CN remains synchronizable.
In particular, for CN with N nodes the claim 1 of Theo-
rem 3.4 gives straighforwardly the following result.

Theorem 3.5. [Čelikovský et al., 2013] Consider CN
(12) that is synchronizable and minimal. Then it can be
globally exponentially synchronized.

4 Auxiliary System Approach
In this section, we repeat some knowledge about aux-

iliary system approach to detect the synchronization in
the DCNs. Auxiliary system approach to detect the gen-
eralized synchronization between unidirectional coupled
chaotic systems was introduced by [Abarbanel et al.,
1996]. Fig. 2 illustrates the scheme of this method.
This method uses the identical copy of the response sys-
tem that is influenced by the same driving signal. The
auxiliary system approach is useful for the detection

of the generalized synchronization in the unidirectional
coupled spatiotemporal systems [Rogers et al., 2004],
laser systems [Jungling et al., 2019], microwave elec-
tronic systems [Plotnikova and Moskalenko, 2019], etc.
In [Kocarev and Parlitz, 1996] the necessary and suffi-
cient conditions for the occurrence of GS between uni-
directional interconnected dynamical systems were ana-
lyzed. These conditions are based on the existence of the
asymptotically stable limit set of the response system.
Further, the application of auxiliary system approach for
the GS regime detection was extended to bidirectional
coupled dynamical systems in [Zheng et al., 2002]. This
method has been widely implemented during the last
decade to detect the GS regime in complex networks.
Moreover, [Moskalenko et al., 2013] highlights that aux-
iliary system approach cannot be used correctly to de-
tect the generalized synchronization regime in both the
oscillators and networks of nonlinear elements with the
mutual type of coupling. Therefore, the auxiliary sys-
tem approach is insufficient for the detection the gener-
alized regime in oriented complex networks. Recently,
the essential conditions for the application of auxiliary
system approach for detection of the GS regime in CN
with directional coupling were reported in [Zhou et al.,
2017]. Namely, it was concluded in [Zhou et al., 2017]
that the auxiliary system approach is effective only when
there is no path from nodes to their driving neighbors.
The ring topology of the complex network does not re-
spect the above condition, because there always exists a
path from each node to their driving neighbor. In other
words, the aforementioned condition satisfies only the
topology of CN described by the directed acyclic graph
(DAG), the so-called DAG network [Zhou et al., 2017],
i.e. adjacency matrix A of complex network is an upper
triangular matrix. Using the terminology of Definition
2.1, the auxiliary system approach is effective if CN has
a master node with in-degree 0 which directly or indi-
rectly influences all other nodes in the complex network.
Therefore, an open question is how to apply the auxil-
iary system approach to detect the GS in DCCN. As we
noticed before in [Čelikovský et al., 2013], DCCN is al-
ways synchronizable. Therefore, it is a challenging task
to study possibility to apply auxiliary system approach
to detect the GS in DCCN. Such a task is addressed in
the next section using numerical experiments.

5 Numerical Simulations
In [Zhou et al., 2017] authors demonstrated that the

auxiliary system approach is effective to be applied to
detect the GS in CN with master node and without
loops. In this section it is shown experimentally that the
auxiliary system approach can be used for the detection
the GS in CN with ring topology. Fig. 3 illustrates the
application of auxiliary system approach to the 3-node
complex network with ring topology and unidirectional
coupling. Three extra nodes with the same structure like
permanent nodes and the same control parameters need
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Figure 5. Synchronization errors between permanent and auxiliary
nodes in 10-node cyclic complex network. Errors in the first and the
ninth nodes are illustrated.

to be added to the original complex network for the de-
tection the GS via this method. Further, the applica-
tion of the auxiliary system approach for the detection
of the GS in cyclic complex network illustrated in Fig. 1
will be analyzed. Here, directed cyclic complex network
consists of 10 nodes being the generalized Lorenz sys-
tem (12) with the same parameters λ1 = 8, λ2 = −16,
λ3 = −1; aij are defined by adjacency matrix A (13),
l1, l2 = −5 and by different control parameters τi (i is
a number of node): τ1 = 0.02, τ2 = 0.04, τ3 = 0.06,
τ4 = 0.08, τ5 = 0.1, τ6 = 0.12, τ7 = 0.14, τ8 = 0.16,
τ9 = 0.18, τ10 = 0.2. Initial condition is taken as:
0 ≤ [ηi1, η

i
2, η

i
3]> ≤ 1 and A is:

A =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0


. (13)

Ten auxiliary nodes with the same parameters τi like
permanent nodes and different initial condition 0 ≤
[ηi1, η

i
2, η

i
3]> ≤ 1 were added and connected to the per-

manent nodes in the master-slave configuration in the
same way like Fig. 3 illustrates.

The synchronization errors between ten permanent
coupled nodes of the analyzed complex network are il-
lustrated in Fig. 4 (top subfigure). The level of the
synchronization errors between permanent nodes of the
complex network after some transient time is still big
enough. Nevertheless, the synchronization errors be-
tween permanent and auxiliary nodes tend rapidly to
zero, see Fig. 4 (bottom subfigure). Fig. 5 illustrates
the synchronization errors between permanent and aux-
iliary systems of the first and the ninth nodes. These
two nodes have a more unstable behavior in the analyzed
cyclic complex network. But, it is shown that it is possi-
ble to use the auxiliary system approach to detect the GS

in DCCN.

6 Conclusions and Outlooks
In this paper, auxiliary system approach was used to

detect the generalized synchronization in the directed
cyclic complex networks. The motivation of this re-
search is to check the applicability of the auxiliary sys-
tem approach for the detection of the GS in a complex
network with ring topology. The auxiliary system ap-
proach allows detecting the GS in this kind of complex
network. Using the auxiliary system approach to detect
the GS in a complex network with bidirectional connec-
tions is still an open question. In our future research, we
will focus on this problem.
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Erdös, P. and Rényi, A. (1960). On the evolution of ran-
dom graphs. Publications of the Mathematical Institute
of the Hungarian Academy of Sciences, 5, pp. 17–61.

Fujisaka, H. and Yamada, T. (1983). Stability theory
of synchronized motion in coupled-oscillator systems.
Progress of Theoretical Physics, 69 (1), pp. 32–47.

Jungling, T., Porte, X., Oliver, N., Soriano, M. C., and
Fischer, I. (2019). A unifying analysis of chaos syn-
chronization and consistency in delay-coupled semi-
conductor lasers. IEEE Journal of Selected Topics in
Quantum Electronics, 25 (6), pp. 1–9.

Khramenkov, V., Dmitrichev, A., and Nekorkin, V.
(2019). Dynamics and stability of two power grids with
hub cluster topologies. Cybernetics and Physics, 8 (1),
pp. 29–33.

Klinshov, V. and Nekorkin, V. (2017). Event-based
simulation of networks with pulse delayed coupling.
Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 27 (10), pp. 101105.

Kocarev, L. and Parlitz, U. (1996). Generalized synchro-
nization, predictability, and equivalence of unidirec-
tionally coupled dynamical systems. Physical Review
Letters, 76 (11), pp. 1816–1819.

Mainieri, R. and Rehacek, J. (1999). Projective synchro-
nization in three-dimensional chaotic systems. Physi-
cal Review Letters, 82 (15), pp. 3042–3045.

Moskalenko, O., Koronovskii, A., Hramov, A., Zhu-
ravlev, M., and Jaimes-Reategui, R. (2017). Residence
time distributions for coexisting regimes of bistable
dynamical systems subjected to noise influence. Cy-
bernetics and Physics, 6, pp. 97–102.

Moskalenko, O. I., Koronovskii, A. A., and Hramov,
A. E. (2013). Inapplicability of an auxiliary-system ap-
proach to chaotic oscillators with mutual-type coupling
and complex networks. Physical Review E, 87 (6),
pp. 064901.

Parlitz, U. (2012). Detecting generalized synchroniza-
tion. Nonlinear Theory and Its Applications, IEICE,
3 (2), pp. 113–127.

Pecora, L. M. and Carroll, T. L. (1990). Synchronization
in chaotic systems. Phys. Rev. Lett., 64 (8), pp. 821–

824.
Pikovsky, A. S. (1984). On the interaction of strange

attractors. Zeitschrift für Physik B Condensed Matter,
55 (2), pp. 149–154.

Plotnikov, S. A. and Fradkov, A. L. (2019). On syn-
chronization in heterogeneous FitzHugh–Nagumo net-
works. Chaos, Solitons & Fractals, 121, pp. 85–91.

Plotnikova, A. D. and Moskalenko, O. I. (2019). Speci-
ficities of generalized synchronization in delayed sys-
tems. Technical Physics Letters, 45 (6), pp. 560–562.

Rehák, B. and Lynnyk, V. (2019). Decentralized net-
worked stabilization of a nonlinear large system under
quantization. In Proceedings of the 8th IFAC Workshop
on Distributed Estimation and Control in Networked
Systems (NecSys 2019), September, pp. 1–6.

Rehák, B. and Lynnyk, V. (2019). Network-based con-
trol of nonlinear large-scale systems composed of iden-
tical subsystems. Journal of the Franklin Institute,
356 (2), pp. 1088–1112.

Rehák, B. and Lynnyk, V. (2019). Synchronization of
symmetric complex networks with heterogeneous time
delays. In 22nd International Conference on Process
Control (PC19), IEEE, June, pp. 68–73.

Rogers, E. A., Kalra, R., Schroll, R. D., Uchida, A.,
Lathrop, D. P., and Roy, R. (2004). Generalized syn-
chronization of spatiotemporal chaos in a liquid crys-
tal spatial light modulator. Physical Review Letters,
93 (8).

Rosenblum, M. G., Pikovsky, A. S., and Kurths, J.
(1996). Phase synchronization of chaotic oscillators.
Physical Review Letters, 76 (11), pp. 1804–1807.

Rosenblum, M. G., Pikovsky, A. S., and Kurths, J.
(1997). From phase to lag synchronization in coupled
chaotic oscillators. Physical Review Letters, 78 (22),
pp. 4193–4196.

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and
Abarbanel, H. D. I. (1995). Generalized synchroniza-
tion of chaos in directionally coupled chaotic systems.
Phys. Rev. E, 51 (2), pp. 980–994.

Shilnikov, A. L., Shilnikov, L. P., and Turaev, D. V.
(1993). Normal forms and Lorenz attractors. Inter-
national Journal of Bifurcation and Chaos, 03 (05),
pp. 1123–1139.

Shilnikov, L. P. (1968). On the generation of a periodic
motion from trajectories doubly asymptotic to an equi-
librium state of saddle type. Mathematics of the USSR-
Sbornik, 6 (3), pp. 427–438.

Zheng, Z., Wang, X., and Cross, M. C. (2002). Tran-
sitions from partial to complete generalized synchro-
nizations in bidirectionally coupled chaotic oscillators.
Physical Review E, 65 (5).

Zhou, J., Chen, J., Lu, J., and Lu, J. (2017). On ap-
plicability of auxiliary system approach to detect gen-
eralized synchronization in complex network. IEEE
Transactions on Automatic Control, 62 (7), pp. 3468–
3473.


