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Abstract
In this paper, the stochastic resonance in Chua’s cir-

cuit driven by alpha-stable noise has been investigated.
Spectral power amplification has been analyzed by
changing the characteristic exponent and scale param-
eters of alpha-stable noise. The results provide a vis-
ible stochastic resonance effect in Chua’s circuit and
the fading is observed as the noise becomes more im-
pulsive (i.e., smaller characteristic exponent) The sim-
ulations reveal that the average time (mean residence
time) spent by the trajectory in an attractor can be var-
ied by changing the characteristic exponent, skewness
and scale parameters of alpha-stable noise.
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1 Introduction
In general, noise is considered to have negative ef-

fects on the performance of a system and there have
been an effort to remove or eliminate these disturbances
from system with various approaches such as filtering
and feedback compensation. However, throughout last
three decades the studies have demonstrated the posi-
tive impacts of the noise. In nonlinear dynamical sys-
tems, the presence of an optimal amount of noise can
provide improvement in the degree of coherence [Gang
et al., 1993], amplification of the weak periodic signals
[Jung and Hänggi, 1991], enhancement in the signal-
to-noise ratio (SNR) [Benzi et al., 1981] or reduce-
ment in the probability of decision error [Kay et al.,
2006; Peng and Varshney, 2015]. This phenomenon is
called as stochastic resonance (SR) and originally in-
troduced to explain the periodic climatic changes of the
Earth’s ice ages [Benzi et al., 1981]. Stochastic res-
onance has been observed in many fields of science,
for example, physics [Anishchenko et al., 1999; Gam-
maitoni et al., 1998], electronic circuits [Anishchenko

et al., 1993; Anishchenko et al., 1992], chemical reac-
tions [Leonard and Reichl, 1994], biological systems
[Moss et al., 2004]. Experiments have demonstrated
that stochastic resonance occurs in sensory systems
such as human tactile sensation [Collins et al., 1996],
human visual perception and human vision [Lugo et al.,
2008; Ranjit et al., 2015]. The existence of stochastic
resonance has been investigated also at the level of vi-
tal animal behaviour such as mechanoreceptors in cray-
fish [Douglass et al., 1993], bacterium growth system
[Chun et al., 2006] and the animal feeding behavior
[Russell et al., 1999].
Anishchenko et al. investigated the SR phenomena

in Chua’s circuit driven by Gaussian noise in [An-
ishchenko et al., 1993; Anishchenko et al., 1994;
Anishchenko et al., 1992]. SR in the presence of
multiplicative noise and the effect of oscillations in
a symmetric double well potential driven by a sub-
threshold periodic forcing has been demonstrated in
[Gammaitoni et al., 1998]. The selection of external
periodic signal frequency larger than the characteristic
frequency results in the occurrence of stochastic res-
onance at only external periodic signal not at its har-
monics. High frequency SR in Chua’s circuit and the
effect of SR in a Chua’s circuit perturbed by Gaussian
noise has been studied experimentally in [Gomes et al.,
2003] and [Korneta et al., 2006], respectively.
The most extensively studied noise is the additive

zero-mean white Gaussian noise however it can be non-
Gaussian noise. The investigation of the double-well
potential model driven by the α-stable and Lévy type
noise in [Dybiec and Gudowska-Nowak, 2006; Dybiec
and Gudowska-Nowak, 2009] have shown the presence
of stochastic resonance. The SR effect also occurs in
the simple threshold sensor system driven by α-stable
noise [Zhi-Rui et al., 2014].
Although traditional SR requires the weak and peri-

odic signal, aperiodic and suprathreshold signals (i.e.,
its amplitude is above a certain threshold value) have
been investigated in [Barbay et al., 2000; Collins et al.,
1995] and [McDonnell et al., 2008; Stocks, 2000], re-



spectively.
The quantitative characteristics of SR depend on the

physical mechanism of the system, the kind of non-
linear system driven, the character of the input signal
and the noise. The calculation or measurement of these
characteristics such as the spectral power amplification
(SPA) [Jung and Hänggi, 1991], the signal-to-noise ra-
tio (SNR) [Benzi et al., 1981], the mutual information
[Bulsara and Zador, 1996], the correlation coefficient
[Collins et al., 1995] and the residence-time distribu-
tions [Gammaitoni et al., 1998] indicate that at an opti-
mal amount of noise the maximum of these character-
istics is achieved.
In this paper, we have investigated the stochastic reso-

nance in Chua’s circuit driven by α-stable noise based
on the work in [Yılmaz, 2012].
The rest of this paper is organised as follows: In Sec-

tion 2, α-stable distributions have been briefly intro-
duced. In Section 3, stochastic resonance has been
investigated for the model of Chua’s circuit driven by
α-stable noise and in Section 4, the effect of α-stable
noise parameters on the mean residence time (MRT)
has been analyzed via the numerical studies.

2 Alpha-stable distributions
Although there is no analytical expression for α-stable

density functions, the characteristic function of a ran-
dom variable X which has a stable distribution can be
described as [Nikias and Shao, 1995; Samoradnitsky
and Taqqu, 1994]

ϕ(w) =

 exp
{
−σα|w|α[1 − iβsign(w) tan(πα

2
)] + iµw

}
for α 6= 1

exp
{
−σα|w|[1 + iβsign(w) 2

π
log(|w|)] + iµw

}
for α = 1

(1)

where sign(w) is signum function and 0<α≤ 2, β ∈
[− 1, 1], σ ∈ R+, and µ ∈ R
A stable distribution is characterized by four param-

eters: α, β, µ, σ and denoted by Sα (σ,β,µ). The
characteristic exponent denoted by α measures the tail
thickness of the distribution (smaller α implies heav-
ier tails i.e., more impulsive behavior). The skewness
parameter β measures the symmetry of the distribution
where β = 0 refers to symmetric distribution, β > 0
right-skewed distribution and β < 0 left-skewed dis-
tribution. µ is a location parameter and the scaling pa-
rameter σ determines the spread of distribution around
its location parameter µ. In fact the Gaussian, Cauchy,
and Levy distributions are special cases of the alpha-
stable distributions with (α=2), (α = 1, β = 0), and
(α = 1/2, β = 1), respectively.
The numerical approximation of α-stable density

functions have been evaluated [Nolan, 1997] by the
Fourier transform of the characteristic function of α-
stable distributions given in Eq. (1) as

f (y;α, β, γ, µ) =
1

2π

∫ ∞
−∞

e−jwyϕ(w)dw. (2)

It is shown as in Fig. (1) that the distribution is highly
impulsive with small characteristic exponentα. Fig. (2)
shows the dependence of density on skewness parame-
ter β. When the skewness parameter β is positive the
distribution is skewed to the right, when β is negative
it is skewed to the left shown as in Fig. (2).
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Figure 1. Symmetric α-stable densities for various α, σ = 1.0,
µ = 0.
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Figure 2. α-stable densities for various β, α = 1.6, σ = 1.0,
µ = 0.

3 The Observation of Stochastic Resonance in
Chua’s Circuit driven by α-stable noise

When the GCC [Suykens et al., 1997] is driven by the
stochastic input then the governing stochastic differen-
tial equation can be written as

ẋ = a [y − h(x)]

ẏ = x− y + z (3)
ż = −by + E(t) + ξ(t)



where a and b denote bifurcation parameters, the exter-
nal forcing signal E(t) = Asinwot and ξ(t) indicates
α-stable noise and the piecewise-linear characteristics
h(x) is given as

h(x) = m1x+
1

2
(m0 −m1) (|x+ 1| − |x− 1|) (4)

The parameters of Chua’s circuit have been chosen
such that two single-scroll symmetrical attractors are
present in the absence of external forcing and the noise.
The characteristic frequency of Chua’s circuit, fch, is

located at 0.225 Hz which corresponds to the maximum
peak in the power spectrum of autonomous Chua’s
circuit. Without noise and external forcing there is
no possibility to jump from one attractor to the other.
However the jumps between the attractors occur if the
external periodic forcing signal is suprathreshold. A
minimum threshold amplitude value of periodic signal
Ath is determined as a function its frequency. These
threshold values required to induce jumps are plotted
in Fig. (3) as a function of the ratio of input frequency
to the characteristic frequency.
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Figure 3. Threshold amplitude value of the external periodic signal
as a function of frequency ratio fo/fch.

Fig. (3) shows the threshold value of the amplitude
of external periodic forcing is low when it is close to
the characteristic frequency and it increases for larger
frequencies than the characteristic frequency.
In this study, the frequency of the external periodic

signal is set at f0 = 0.6075 Hz where f0/fch = 2.7
where the corresponding threshold amplitude is Ath =
0.362. Since we want to induce jumps between the at-
tractors by the addition of noise, the amplitude of the
external forcing is set as A = 0.35 i.e., this value is
close to but below the minimum threshold value to en-
sure that the input signal is sub-threshold. Under these
conditions, the addition of small amount of noise en-
ables to induce jumps between the attractors. To study
the amplification of the input signal as a function of

the noise intensity for observing the effect of SR and
analyze the response of model by varying alpha-stable
parameters we define a spectral amplification parame-
ter η

η =
Sout(wi)

Sin(wi)
(5)

where wi = 2πfi is the input signal frequency (rad/s),
Sin(wi) is the average power of input signal and the
power spectral density of output state x at the input fre-
quency is defined as Sout(wi) =

∫ wi+4w
wi−4w S(w)dw.

The amplification of the sub-threshold input periodic
signal as a function of the noise intensity for various α
parameters with β = 0 is shown as in Fig. (4). The
simulation results show a visible stochastic resonance
(SR) effect in Chua’s circuit driven by α-stable noise.
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Figure 4. Spectral power amplification for various α parameters.

Fig.(4) results that the Gaussian case where α = 2.0
provides the best amplification. When the distribution
of the driving noise is more heavy-tailed (i.e., α gets
smaller) the amplification η decreases. SR occurrence
is also observed at smaller scale parameter σ values as
the noise becomes more impulsive as shown in Fig. (4).
Similar fading effect for the threshold systems have
been observed in [Kosko and Mitaim, 2001; Kosko and
Mitaim, 2003].

4 The Control of Residence Times in Chua’s Cir-
cuit by Alpha-Stable Noise

The residence time is defined as the time duration that
the trajectory spends in one state (i.e., a single scroll
attractor in our case) before jumping to another attrac-
tor and the determination of the residence time has the
quantitive characteristics of the stochastic resonance
observed in chaotic dynamical systems [Anishchenko
et al., 1993; Anishchenko et al., 1992]. We have de-
termined the mean residence time in an attractor under
the various noise parameters to investigate the effect



of noise parameters on the average lifetime of a tra-
jectory in an attractor. The mean residence time for
α = 1.8 has been analyzed for various skewness pa-
rameter β and scale parameter σ of noise. When the
skewness parameter is chosen as β = 1 (i.e., the dis-
tribution is right-skewed) the trajectory spends more
time in the corresponding right-scroll attractor. Also,
the MRT decreases exponentially with the increase of
scale parameter σ. The mean residence times for var-
ious characteristic exponent parameters α in symmet-
ric case is shown in Fig. (6). When the characteristic
exponent α increases the mean residence time in the
corresponding attractor also increases.
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Figure 5. Mean residence times vs. scale parameter σ for α =
1.8.
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Figure 6. Mean residence times vs. scale parameter σ for various
α parameters.

5 Conclusion
In this paper the stochastic resonance in Chua’s circuit

driven by α-stable noise has been investigated. We first

determine a threshold value for the amplitude of input
periodic signal as a function of its frequency to ensure
that it cannot induce jumps between the attractors in the
absence of noise and then we have used spectral power
amplification as a measure of SR. The simulation re-
sults show a visible stochastic resonance (SR) effect
in Chua’s circuit driven by α-stable noise. The best
amplification has been observed for the Gaussian case.
The optimum noise scale parameter σ decreases as the
distribution becomes more impulsive. Furthermore the
effect of noise parameters on the mean residence times
have been analyzed. When scale parameter σ increases
then mean residence time decreases exponentially. On
the other hand, the decrease in characteristic exponent
α (hence the increase of impulsiveness) cause the de-
crease in the mean residence time in a single scroll at-
tractor. Also the mean residence time can be increased
by changing the skewness parameter. The mean resi-
dence times in a single scroll attractor have been con-
trolled by varying the parameters of alpha-stable noise.
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