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Abstract
We consider a dynamical system in the parameter

zone admitting two coexisting limit cycles under the
transition to chaos via period-doubling bifurcations.
Under the random disturbances, noise-induced tran-
sitions between two coexisting separate attractors are
studied. We suggest a stochastic sensitivity function
technique for the analysis of this type transitions. This
approach allows to construct the dispersion ellipses of
random trajectories for any Poincare sections. Possibil-
ities of our descriptive-geometric method for a detailed
analysis of noise-induced transitions between two peri-
odic attractors of Lorenz model are demonstrated.
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1 Introduction
Stochastic fluctuations of nonlinear oscillations play

an important role for understanding the correspond-
ing dynamical phenomena in electronic generators,
lasers, mechanical, chemical and biological systems
([Stratonovich, 1963]). The various noise-induced
transitions through periodic to more complicated
regimes are a central problem in a nonlinear stochas-
tic dynamics ([Horsthemke and Lefever, 1984]). The
sensitivity analysis of random forced oscillations is a
key for investigation of these transitions. Multistable
systems exhibit complex dynamics ([Feudel and Gre-
bogi, 2003]) with noise-induced hopping between co-
existing attractors and their basins of attraction ([Kraut
and Feudel, 2002; Soiza et al, 2007]).
Noise-induced transitions between coexisting stable

equilibria of 1D and 2D-systems are well studied. Now
a subject of intensive investigation is an analysis of
noise-induced transitions between limit cycles of 3D-
systems.

Since its invention ([Lorenz, 1963]) the Lorenz sys-
tem has been a basic model for investigations in many
directions. This 3D-model shows a great variety of
qualitatively different regimes of behavior ([Sparrow,
1982]). Lorenz model is a classic example of 3D-
system with coexisting periodic attractors and transi-
tion to chaos via period-doubling bifurcations. It al-
lows to use Lorenz model as a basic tool for the testing
of new methods of nonlinear systems analysis.
In this paper, we consider the stochastically forced

Lorenz system with coexisting limit cycles for period-
doubling bifurcation zone near chaos. The aim of
our work is to analyze noise-induced transitions be-
tween periodic attractors. Our approach is based on
the stochastic sensitivity function technique ([Bashkirt-
seva and Ryashko, 2000], [Bashkirtseva and Ryashko,
2002], [Bashkirtseva and Ryashko, 2004]).

2 Deterministic and stochastic attractors of the
Lorenz model

Consider the stochastic Lorenz model

ẋ = σ(−x + y) + εẇ1 σ = 10, b = 8
3

ẏ = rx− y − xz + εẇ2

ż = −bz + xy + εẇ3.

(1)
Here wi(t) (i = 1, 2, 3) are independent stan-
dard Wiener processes with Gaussian increments,
E(wi(t) − wi(s)) = 0, E(wi(t) − wi(s))2 = |t − s|.
Parameter ε is a value of the noise intensity. For ε = 0,
an interval 200 < r < 350 is well-known ([Sparrow,
1982]) as a period doubling bifurcations zone with in-
finite chain of limit cycles and transition to chaos (see
Fig.1).
As the parameter r decreases the deterministic Lorenz

system passes the symmetric saddle-node bifurcation
and the symmetric stable cycle splits and two stable
non-symmetric cycles appear (see Fig. 1 b).
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Figure 1. Attractors of deterministic Lorenz model a) r = 330;
b) r = 300; c) r = 225; d) r = 217; e) r = 200.
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Figure 2. Stochastic attractors of the forced Lorenz model for r =
300 a) ε = 0.3; b) ε = 2

At the further decrease of r either of the two cycles
demonstrates the standard cascade of period doubling
with transition to chaos.
The noise disturbances result in a stochastic deforma-

tion of the deterministic unforced attractors. Under the
random disturbances the trajectories of a stochastically
forced system leave the deterministic attractor and form
some bundle around it with a corresponding probabilis-
tic distribution. A dispersion of random states of the
stochastically forced system near a deterministic attrac-
tor depends on the noise intensity and stability proper-
ties of the attractor local parts. In Fig. 2, stochastic
attractors of the system (1) for r = 300 and ε = 0.3, 2
are plotted.
Consider noise-induced transitions between two sepa-

rate co-existing deterministic cycles. For small noises,
random states are concentrated in the small neighbor-
hoods of corresponding deterministic curves (see Fig. 2
a). As a noise intensity grows, the dispersion increases,
two separate bundles of random trajectories approach
and get mixed up (see Fig. 2 b). Probabilistic char-
acteristics of these noise-induced transitions between
basins of attraction for co-existing unforced cycles de-
pends on both the stochastic sensitivity and a spatial
arrangement of these deterministic attractors.
The results presented here give us a qualitative de-

scription of possible noise-induced transitions. More



detailed quantitative analysis of noise-induced tran-
sitions between two coexisting cycles will be presented
below using the stochastic sensitivity function (SSF)
technique.

3 SSF analysis of the stochastic attractors and
noise-induced transitions

Consider Ito’s stochastic system

ẋ = f(x) + εσ(x)ẇ. (2)

Here w(t) is a n−dimensional Wiener process, σ(x) is
a matrix function of disturbances with intensity ε. Sup-
pose the system (2) for ε = 0 has a T -periodic solution
x = ξ(t) with an exponentially stable phase curve γ.
The random trajectories of the forced system (2) leave

the closed curve of deterministic cycle γ and due to
cycle stability form some bundle around it.
The probabilistic distribution for the bundle of random

trajectories localized near cycle has Gaussian approxi-
mation ([Bashkirtseva and Ryashko, 2000], [Bashkirt-
seva and Ryashko, 2004])

ρ ≈ Ke−
v(x)
ε2 ≈ K exp

(
− (∆(x), Φ+(γ(x))∆(x))

2ε2

)

with covariance matrix ε2Φ(γ). The covariance matrix
characterizes the dispersion of the points of intersection
of random trajectories with hyperplane orthogonal to
cycle at the point γ. The function Φ(γ) is a stochastic
sensitivity function (SSF) of the limit cycle.
We represent a function Φ(γ) in a parametric form.

The solution ξ(t) connecting the points of cycle γ with
points of an interval [0, T ) gives the natural parametri-
zation Φ(ξ(t)) = W (t). A matrix function W (t) is a
solution of the boundary value problem for Lyapunov
equation

Ẇ = F (t)W + WF>(t) + P (t)S(t)P (t), (3)

with conditions

W (t)r(t) ≡ 0, W (0) = W (T ). (4)

Here

F (t) =
∂f

∂x
(ξ(t)), S(t) = σ(ξ(t))σ>(ξ(t)),

r(t) = f(ξ(t)), P (t) = Pr(t), Pr = I − rr>/r>r,

where Pr is a projection matrix onto the subspace or-
thogonal to the vector r 6= 0. Details and mathemat-
ical background can be found in ([Bashkirtseva and
Ryashko, 2004]).
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Figure 3. Poincare section of the stochastic cycle and confidence
ellipse for r = 330, ε = 1, p = 0.85

For 3D-cycles, the matrix W (t) has the following de-
composition

W (t) = λ1(t)v1(t)v>1 (t) + λ2(t)v2(t)v>2 (t). (5)

Here λ1(t) ≥ λ2(t) ≥ λ3(t) ≡ 0 are eigenvalues, and
v1(t), v2(t), v3(t) are eigenvectors of the matrix W (t).
The constructive method for computation of this

decomposition is presented in ([Bashkirtseva and
Ryashko, 2004]).
In a case of non-degenerate noises the functions

λ1(t), λ2(t) are strictly positive and determine for any t
a dispersion of random trajectories around cycle along
vectors v1(t), v2(t).
Values λ1(t), λ2(t) determine the size and

v1(t), v2(t) determine the directions of a dispersion el-
lipse axes. The equation of this ellipse in a plane or-
thogonal to the cycle γ at the point ξ(t) looks like

(x− ξ(t))>W+(t)(x− ξ(t)) = 2k2ε2,

where the parameter k determines a fiducial probability
P = 1− e−k.
We apply SSF technique to the analysis of noise-

induced transitions between stochastic cycles of the
forced Lorenz model (1).
Functions λ1(t), λ2(t), v1(t), v2(t) allow to con-

struct an ellipse of the dispersion of random trajectories
intersection points with any Poincare section plane. As
one can see in Fig. 3 the constructed ellipse precisely
reflects a spatial dispersion of the intersection points.
For the ellipse plotted in Fig. 3 the value of fiducial
probability p equals 0.85.
So, the SSF technique allows to construct the disper-

sion ellipses for any Poincare sections. These ellipses
give us a descriptive-geometric method for the analysis
of noise-induced transitions between coexisting limit
cycles.
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Figure 4. Noise-induced transitions r = 300 a) ε = 0.3;
b) ε = 1; c) ε = 2

Compare results of SSF technique with direct numeri-
cal simulation. Let us track sequential phases of noise-
induced transitions between two separate co-existing
3D-cycles with the help of Poincare sections. In Fig.
4, corresponding dispersion ellipses (solid line) found
by SSF technique and intersection points (asterisks) of
the random trajectories with a half-plane y = 0, x > 0
for fixed r = 300 and various values of noise intensity
ε = 0.3, 1, 2 are plotted.
For ε = 0.3, random trajectories are localized near

deterministic orbits (see Fig. 4 a). For ε = 1, inter-
section points approach (see Fig. 4 b) and for ε = 2
become essentially intermixed (see Fig. 4 c).
These ellipses clearly reflect essential peculiarities of

random states distribution near the deterministic cycle.
For ε = 0.3, dispersion ellipses are localized near de-
terministic orbits (see Fig.4a) and lie far from one an-
other. As parameter ε grows, these ellipses approach
and begin to intersect (see Fig. 4 b, c). This intersec-
tion gives a signal of noise-induced transition begin-
ning. Our ellipses technique based on SSF method con-
nects a level of noise-induced transition with a noise
intensity parameter. In fact, a size and a mutual ar-
rangement of dispersion ellipses allows to describe and
predict effectively the main features of noise-induced
transitions.
Conclusion
We study a basin-hopping phenomenon for systems

with multistable states under the random disturbances.
This paper has concentrated on the noise-induced tran-
sitions in 3D systems with limit cycles on the period-
doubling route to chaos. The main probabilistic phe-
nomenon and method of the analysis are presented for
the well-known stochastically forced Lorenz model.
We study noise-induced transitions between two coex-
isting separate cycles.
In this paper, we propose a universal theoretical ap-

proach to the quantitative and geometrical analysis of
the probabilistic mechanism of noise-induced transi-
tions between coexisting 3D-limit cycles. This ap-
proach is based on Poincare sections method and
stochastic sensitivity function technique. This func-
tion provides a constructive approximation of the prob-
abilistic distribution for stochastic 3D-cycles. In the
presented paper it was shown that SSF technique is an
effective method for noise-induced transitions analysis.
This technique allows to find a spatial configuration
and sizes of the dispersion ellipses of random trajecto-
ries for any Poincare sections. Dispersion ellipses are
a plain and useful tool for the study of the probabilis-
tic mechanism of noise-induced phenomena. For small
noise, the dispersion ellipses are localized near deter-
ministic cycles and definitely separated. As a noise in-
tensity grows, these ellipses approach one to another
and begin to intersect. This intersection marks a noise-
induced transition beginning. In fact, a size and a spa-
tial arrangement of dispersion ellipses allow to describe
and predict effectively the main features of the noise-
induced transitions without huge costs for direct nu-
merical simulations of random trajectories.
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