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Abstract We discuss the approaches to solution concepts for

The paper deals with the state estimation problem for such uncertain dynamical systems based on ideas of
impulsive control system described by linear differ- well known discontinuous time substitution [Rishel,
ential equations containing impulsive terms (or mea- 1965] and the techniques of differential inclusions the-
sures). The problem is studied under uncertainty con- ory [Filippov, 1985]. The approaches are based on the
ditions with set — membership description of uncertain technigues of approximation of the discontinuous gen-
variables, which are taken to be unknown but bounded eralized trajectory tubes by the solutions of usual dif-
with given bounds (e.g., the model may contain un- ferential systems without measure terms.
predictable errors without their statistical description). Furthermore in this paper we use the well known
Basing on the techniques of approximation of the gen- results of the theory [Kurzhanski and Valyi, 1997;
eralized trajectory tubes by the solutions of usual dif- Chernousko, 1988] of ellipsoidal estimating of states
ferential systems without measure terms and using theof dynamical control systems with classical (measur-
techniques of ellipsoidal calculus we present here aable) controls and develop these results to find the up-
new state estimation algorithms for the studied impul- per set-valued bounds for reachable sets of linear im-
sive control problem. The examples of construction of pulsive control problem.
such ellipsoidal external estimates of reachable sets and e ellipsoidal estimates of the reachable set of the
trgjectory tubes of linear impulsive control systems are |inear impulsive control systems were obtained in [Vz-
given. dornova and Filippova, 2006; Vzdornova, 2007]. The
algorithms of ellipsoidal estimates of such impulsive
systems are based on the techniques of external and in-
ternal ellipsoidal approximations of a convex hull of
the union of a family of ellipsoids.

In this paper we suggest another approach to the con-
struction of ellipsoidal estimates of the reachable set
of the linear impulsive control systems. To solve this

The topics of this paper come from the theory of dy- problgm we study the related differgntial inplusion ofa
namical systems with unknown, but bounded uncer- class_|cal type (.W 'thOUt. measure or '”?p“'S"’e controls)
tainties (the case of the so-called "set-membership” gnd_fmd elllpsq|dal e?“”_‘ates o fits trajectory tgbes_pro-
description of uncertainties) [Kurzhanski, 1977: jections of which coincide with the upper ellipsoidal

Kurzhanski and Valyi, 1997; Filippova, 2005]. Number tbrg?g)?sst:r)’r: reachable sets of the linear impulsive con-
of researches is devoted to the different aspects of the '
theory of optimization of dynamic systems with gener-
alized (impulse) control [Filippova, 2005; Dykhta and
Sumsonuk, 2000; Zavalischin and Sesekin, 1991]. 2 Problem Formulation
In this paper the impulsive control and estimation Consider a dynamical linear control system described
problem for a dynamic systems with unknown but by a differential equation with impulsive contro(-)
bounded initial states is studied. Such problems arise
from mathematical models of dynamical and physical
systems for which we have an incomplete description dz = A(t)zdt + b(t)du,
of time dependence of their generalized coordinates. z € R™, x(ty — 0) =z, t € [to, T].

Key words
Impulsive control, differential inclusions, reachable
sets, estimation.

1 Introduction
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Here we assume thalt(¢) is a continuous x n - matrix
function on(to, 7], b(t) is n-vector continuous func-
tion.

The initial valuex is unknown but bounded with a
given bound.

To € Xy = E(CL, R), (2)

where
E(a, R) = {xo€R™|(xg — a) R (zg — a) < 1},

R is a symmetric positive definitex n matrix,a € R"
is a center of the ellipsoigd.

The impulsive controki(t) (u(:) : [to,T] — R) is
continuous from the right, with bounded variation

Var wu(t) =su u(t;) —u(t;i—) < p, (3
a0 = s 3 ) — i) <,
whereu = (u1,...,uy); t; : to<...<t, =T andp

is a given positive number. We assume also ttat is
increasing orjty, 7.

Denotel{ the class of impulsive functions(t) that
satisfied (3).

The solutionz(t) = x(t;to, u, xo) of the control sys-
tem (1) under constraints (2)—(3) has form

$0+/X

whereX (t) is the Cauchy matrix solutioX = A(t)X

(t to,’u, (I,'O )du(T)v

(X(0) =1).
Denote
t to,XQ U U t to, u, xO
u(-)EU ToEXD
The setX (t) = X(t;t9, Xp) is actually the reachable

set of the impulsive differential system (1) from the ini-

tial setX} at the instant under restriction (3) for all
possible admissible controlg-).

The main problem of the paper is to find the ellip-

soidal estimaté& (o™ (T), Q*(T)) for the reachable set
X (T) basing on the special structure of the d&teand
restriction (3) on the impulsive control.

3 Main Results

Basing on results of ellipsoidal calculus [Chernousko

1988; Kurzhanski and Valyi, 1997] developed for lin-

ear uncertain systems and discrete-time versions of the

3.1 The Approach
Let us introduce a new time variable and a new state
coordinate [Rishel, 1965; Vinter and Pereira, 1988]:

t

n(t) =t+ /du(t),

to

7(n) = inf{t [ n(t) > n}.

Consider the auxiliary differential inclusion [Filip-
pova, 2005]

(4)

2(to) = zo € Xo, T(to) =to, to <n<T+ p.

Here

a(r.2)= | {(1y) <A(z)z>+u<b(g))}. )

0<v<1

Denotew = {z,7} the extended state vector of the
system (4) and denote(n, to, wp) the solution of the
differential inclusion (4). Consider the trajectory tube
of this differential inclusion:

U

wo EXp X{to}

W(n) to <1 <T+p.

(6)
From the properties of trajectory tubes of ordinary dif-
ferential inclusion and the properties of the system (4)
we conclude that the following theorem is valid.

w(na t07 wO);

Theorem 1 [Filippova, 2005]. The reachable set
X (T) is the projection oMW(T + ) at the subspace
of variablesz: X(T) =7, W(T + p).

Applying Theorem 1 to construct the ellipsoidal esti-
mates of the reachable s&{(7T") we need to construct
first the ellipsoidal estimates ¥ (T + ).

It should be noted that the technique of ellipsoidal cal-
culus can not be applied directly because the set-valued
function G(r, z) is nonlinear on state variables. We
propose here an algorithm for estimating reachable sets
W(n) based on the theory of integral funnel equations
[Panasyuk, 1990]. The presented algorithm is simi-

* lar to Euler’'s numerical scheme for finding set-valued
states of differential systems.

funnel equations [Panasyuk, 1990] we present the mod-

ified state estimation approaches that allow to solve the 3.1.1 Ellipsoidal Estimation of W(T + )

problem.

Letus
consider the particular case of the funnel equation re-



lated to (4)—(5) [Filippova, 2005; Panasyuk, 1990]:

lirgl_oa_lh (W(n—i—a), U (w4oG(wpt1, w1, ..., wy)

. w:(wl,...,wn+1)EW(n))=0,>

W(to) = WOa ne [thT + :u]v

7
hereh(A, B) is theHausdorff distancdetween com-
pact setsA, B C R".

Under above mentioned assumptions the following

theorem is true (details may be found in [Filippova,
2005; Panasyuk, 1990]).

Theorem 2. [Filippova, 2005; Panasyuk, 1990The
nonempty compact-valued functis¥(n) is the unique
solution to the evolution equatidfT).

From the properties of the solutions of the evolution

equation (7) we conclude that the following theoremis 3.1.2 Auxiliary Results.

valid.

Theorem 3. For all ¢ > 0 the following inclusion
holds

E(at(tg,o,v), QT (tg,0,v))
W(to+U)CO<LVJ<1< 0t0+0(1_y) 0 ) +
+0(0)B.(0,1), Ullriloo_lo(a)zo,

(8)
where
B.(0,1) = {zeR""| [z] <1},
at(tg,o,v) = (I +0(1 —v)A(tg))a + avb(ty),
Q% (to, 0, V):(I—i—o(l—V)A(to))R(I—i—J(l—I/)A(t(()s));’.

Proof. The proof of this theorem is carried out un-

So we fix an arbitrarye>0 and put the degener-
ated ellipsoidW(ty, o,v) into nondegenerated ellip-
soidE (w(tg, o,v), Oc(tg,0,v)):

W(t070-7y) gEE(U)(tO,O',U),Oe(t070',l/>), (12)

w(to,0,v) = (t: i(?(’f’fyz)/) ) ’

Oe(t(),O', 1/) — <Q+(t%70', V) 602) .

Therefore for any:>0 the following inclusion is true

)= & (w

0<v<1

W(tO 0— CW th (t0707 V))

(13)

tQ,U I/

In order to construct the
external estimate ofV,(ty, o), we consider two auxil-
iary problems.

Auxiliary Problem AP1. Find the ellipsoid
EX(w*(ty,0), 0% (tg, o)) such that

We(to,O') C E:(w+(t0,0),0+(t0,0‘)>. (14)
Therefore from (13) we will have also
W(to,o) C EX (wt (tg,0),0" (tg,0)). (15)

Remark. Because the sétV(ty, o) is compact and
functionsa™ (t9, o, v) andQ™ (to, o, v) are continuous,
the equality

1113_10 hW(to,0), We(to, o)) =0

der the scheme of proof of Theorem 3 [Filippova and is true.

Berezina, 2008].

Remark. In the paper [Vzdornova and Filippova,

Auxiliary Problem AP2.  Given two ellipsoids

E(ar, Q1) and&(az, Q2), (a; # 0, Q; = Q; > 0,

2006] we constructed the upper estimates of the union? = 1,2), find an external ellipsoid (o™, Q™) such
of ellipsoids under condition that ellipsoids are nonde- that

generate. Here the set

Wito,0) = |J Wilto,o,v) (10)
0< v<1
with
o= (G o)

in (8) is the union of degenerate ellipsoids in the ex-

tended spacR"*! for each parameter.

g(alan) U E(GQ,QQ) g g(CL+,Q+).

The following lemmas are true.

Lemma 1. For givenay, as, Q1, Q2 (a; # 0,
Qi = Q) > 0,7 =1, 2) the following inclusions hold

E(a1,Q1) C E(ar1,Q1)UE(2a2 — a1, Q1) C
c&(ar, Q1) + E((az—a1), (az—ar)(az — a1)')C
C&(az, (14p)Qi+(1+p~")(a2—a1)(az—a1)")=

=E(a2,Q1), p € (0,((az — a1)'Qy (a2 — a1))?].



Proof. For any matrix@Q = Q' > 0 and any vector
a € R™, a # 0the following formula is valid [Vazhent-
sev, 2004]

co (£(0,Q)UE(2a,Q)) =£(0,Q)+E(a,aa’).  (16)

The matrix of the ellipsoid = £(a, Q™) which con-
tains the sun€ (0, Q) + £(a, aa’) may be found as in
[Chernousko, 1988; Kurzhanski and Valyi, 1997]:

QT =0 "'+1)Q+ (p+1)ad, 17

where parameter € (0, ('Q'a)z]. The proof of this
lemma following from formulaes (16)—(17).

Lemma 2. [Vzdornova and Filippova, 2006[he in-
clusion is true

E(az, Q1) U€(az,Q2) C E(az,Q") = E(a™,Q"),
(18)

Lol V1T

~ ~ ~ 1 ~
QY =QiM'OTMQ;, OF = diaglur,....pn},
where u;, = max{1,\;}, A; are the eigenvalues of

matrix Q7 1Q,, M is the orthogonal matrix such that

~_ 1 ~_ 1
M'Q; 2Q2Q, 2 M=diag{\1,..., A\n}.

Proof. Details of the proof may be found in [Vz-
dornova and Filippova, 2006; Vzdornova, 2007].

Lemma 3. The ellipsoid E(a™, Q") defined in(18)
is the solution of the Auxiliary Problem AP2

E(ar,Q1) U&(az,Q2) C E(a™, Q™).

Proof. The proof of this lemma follows directly from
the construction of the ellipsoiff(a™, Q™).

The following example illustrates the construction of
the external ellipsoidal estimate of the union of two el-
lipsoids with different centers and matrices (the solu-
tion of Auxiliary Problem AP2).

Example 1. Consider two ellipsoid€ (a;, @) and
E(GQ,QQ) . Herea1 = (0701), ag = (01,0),

(%) 0 ().

Figure 1 shows the ellipsoifl(a;,@1) (it is marked
by numberl), ellipsoid (a2, Q2) (it is marked by

1.09 0.9
09 9

-0.5 0 05 1

Figure 1.
ters

Ellipsoidal estimates of two ellipsoids with different cen-

number2) and the external ellipsoid(a®,Q*) D
E(a1,Q1) U&(az, Qo) (itis marked by numbeB).

Algorithm of ellipsoidal estimation oV, (o, o) is
given below.

Algorithm 1.

We fix arbitrarye > 0 ando > 0. Subdivide the seg-
ment|[0, 1] into subsegments;, ;1] wherev; = jh
(G=0,....m),h=1/m, vy =0,v,, =1.

For given Aj E(a,R) we find parame-
ters a*(tg,o,v;), QT (to,o,v;) of ellipsoids
E(a™ (to,o,v;), Qt(to,0,v;)) defined in (9) (Theo-
rem3)forj =0,...,m.

Given

{E(a* (to,0,v5), QT (to,0,v5))[ = 0,...,m}

we findm + 1 ellipsoids

E(w(to,0,v5),0c(to,0,v)), j=0,...,m (19)

using (12) in the extended spaR&*!.
To solve the Auxiliary Problem AP1 (14) we need to
find the ellipsoidE ! (w™ (tg, o), OT (to, o)) so that

Ugé(w(t(b g, Vj)v Oe(to,d, Vj)) -
J
C EX(wT(tg,0),0" (to, 0)).

Step 1. Consider the ellipsoids defined in (19) for
j=0andj =1, namely

Ec(w(to, 0,10), Oc(to, 0, 10)),
€€(w(t070-7 V1)7 Oe(tO; ag, Vl))'

Basing on the solution of the Auxiliary Problem AP2
we find the ellipsoidE ! (wt (¢g, o), O (¢, o)) such



that

Ec(w(to,0,10), Oc(to, o,1p)) U
) ge(w(t0707 Vl)aoe(t();o—v Vl)) C
C EFY(w™ (to,0),0" (to, 0)).

Step 2.We take two ellipsoids:

Ef (w* (to, ), 07" (to, 0)),
Ec(w(to,0,12), Oc(to, 0,v)), (j = 2).

As at the Step 1 we find
EF2(wT(tg,0), 0% (tg,0)) such that

the ellipsoid

E (w*(to,0),0% (tg,0)) U
U Ec(w(to, o,12),Oc(to, o,12)) C
C EF%(w™ (ty,0),0" (to, 0)).

Step 3.Next steps continue iterations 1-2.
At the end of the process we will get the external esti-
mateE (wt (tg, o), 0" (tg, o))

Ué’e(w(to, o, Vj), Oe(t(hO', l/j)) C
J

C EX(wT(tg,0),0" (to,0)).

Therefore we will have the estimate of the reachable
setWe(to, o)

Ws(tOva) - Ej(er(tOvJ)? O+(t03 0))

which provides the solution of Auxiliary Prob-
lem AP1 (14).

3.2 Algorithm of Ellipsoidal Estimation of reach-
able setX (7).
Basing on the previous results we may formulate the
following scheme that gives the external ellipsoidal es-
timate of X (T') of the system (1).

Algorithm 2. We fix arbitrarye > 0 and subdivide
the time segmerijty, T + p] into subsegments;, ¢;1]
wheret, = to+ic (i =1,...,k),0c = (TH+p—to)/k,
ty =T+ p.

Step 1.Consider the time segmefg, ¢t1]. We take the
initial setXy, = £(a, R) in the Algorithm 1 and find the
ellipsoid EXt (w* (o), OF (o)) such that

W(to,0) € EF (w(0),0%(0)),

where set3/V (1, o) are defined in (10).

| T=0.2; 0.4; 0.6; 0.8; 1

Figure 2. The dynamics of reachable s&{§7T")

Step 2. Consider the next time intervdt, t5].
The ellipsoid EX (wT (o), 07 (o)) is considered as
the start ellipsoid at the momer for the Algo-
rithm 1. Apply Algorithm 1 again. The resulted set
EX?(wt (o), 0% (o)) will be the start ellipsoid for the
next moment, in the Algorithm 1.

Step 3 Repeat Step 2 for each moment ¢; = to+ic

(i = 2,...,k). At the end of the process the ellipsoid
EX(w*,07) will be obtained so thatW(T + u) C
EX(w*,07").

Step 4. By Theorem 1 find the projection of the
ellipsoid E.(w™,0") at the subspace of variables
{z1,...,2n}

E(a™(T),QH(T)) = m.E.(wt,0™).

Therefore we will have the external estimate
E(a™(T),QT(T)) of the reachable set¥(T) of
system (1) from initial sefy under restriction (3).

Example 2. Consider the following impulsive control
system:

{

The impulsive controk(t) is continuous from the
right, with variationVarcjo 7 u(t) < 1. We assume
also thatu(t) is increasing oo, 7.

The initial statesry are unknown but belong to the
following ellipsoid Xy = £(0, R),

The exact reachable set are presented at Figure 2 for
some values df’. The tube of trajectories of the system
(20) is indicated at Figure 3.

dl‘l (t) = T2 (t)dt,

dny(t) = dup(r), T OSIET

(20)

40

xOGong(O,R), R:(Ol



Figure 3. Trajectory tubél’(¢) for ¢ € [0, 1.7] Figure 4. The estimate of the reachable&&{I") for T' = 1

Figure 4 illustrates the external estimation algo- ternational Conference "Physics and ControBaint

rithm 2. The external ellipsoidal estimates and exact _Petersburg, Russia, August 24-26, pp. 587-591.
timation Approaches for Uncertain Dynamical Sys-

tems with Quadratic Nonlinearity: theory and com-
4 Conclusion puter simulationgecture Notes in Computer Science

We consider the problems of state estimation for dy- Berlin: Springer, vol. 4818. pp. 326-333.

namical control systems with impulsive control and Kurzhanski, A. B. (1977)Control and Observation un-
with unknown but bounded initial state. der Conditions of UncertaintyNauka, Moscow. (in

Basing on results of ellipsoidal calculus developed for  Russian). . o
linear uncertain systems and discrete-time versions ofKurZhanSk'{ A.B., Valyi, I. (1997)E||'p30'da| Calcu-
the funnel equations we present the modified state estj-_US for Estimation and ControBirkhauser, Boston.
mation approaches that allow to solve the problem. ~ Panasyuk, A. 1. (1990). Equations of Attainable Set Dy-
Suggested approach opens the way to solve the prob- namics. Part 1: Integral Funnel Equatich©ptimiz.
lem of estimating of the uncertain states of impulsive _ | N€0TY Appl.vol. 64, no. 2, pp. 349-366.
control systems under state constraints. Rishel, R. (1965). An Extended Pontryagin Pr|nC|p_Ie
Examples and numerical results related to procedures for Control System whose Control Laws Contain

. ; MeasuresSIAM J. Contro] vol. 3. pp. 191-205.
of set-valued approximations of trajectory tubes and S .
reachable sets are also presented. Vazhentsey, A. Y. (2004). External Ellipsoidal Estima-
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and Modelling vol. 15, no. 2. pp. 110-122.
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