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Abstract
The paper deals with the state estimation problem for

impulsive control system described by linear differ-
ential equations containing impulsive terms (or mea-
sures). The problem is studied under uncertainty con-
ditions with set — membership description of uncertain
variables, which are taken to be unknown but bounded
with given bounds (e.g., the model may contain un-
predictable errors without their statistical description).
Basing on the techniques of approximation of the gen-
eralized trajectory tubes by the solutions of usual dif-
ferential systems without measure terms and using the
techniques of ellipsoidal calculus we present here a
new state estimation algorithms for the studied impul-
sive control problem. The examples of construction of
such ellipsoidal external estimates of reachable sets and
trajectory tubes of linear impulsive control systems are
given.
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1 Introduction
The topics of this paper come from the theory of dy-

namical systems with unknown, but bounded uncer-
tainties (the case of the so-called ”set-membership”
description of uncertainties) [Kurzhanski, 1977;
Kurzhanski and Valyi, 1997; Filippova, 2005]. Number
of researches is devoted to the different aspects of the
theory of optimization of dynamic systems with gener-
alized (impulse) control [Filippova, 2005; Dykhta and
Sumsonuk, 2000; Zavalischin and Sesekin, 1991].
In this paper the impulsive control and estimation

problem for a dynamic systems with unknown but
bounded initial states is studied. Such problems arise
from mathematical models of dynamical and physical
systems for which we have an incomplete description
of time dependence of their generalized coordinates.

We discuss the approaches to solution concepts for
such uncertain dynamical systems based on ideas of
well known discontinuous time substitution [Rishel,
1965] and the techniques of differential inclusions the-
ory [Filippov, 1985]. The approaches are based on the
techniques of approximation of the discontinuous gen-
eralized trajectory tubes by the solutions of usual dif-
ferential systems without measure terms.

Furthermore in this paper we use the well known
results of the theory [Kurzhanski and Valyi, 1997;
Chernousko, 1988] of ellipsoidal estimating of states
of dynamical control systems with classical (measur-
able) controls and develop these results to find the up-
per set-valued bounds for reachable sets of linear im-
pulsive control problem.

The ellipsoidal estimates of the reachable set of the
linear impulsive control systems were obtained in [Vz-
dornova and Filippova, 2006; Vzdornova, 2007]. The
algorithms of ellipsoidal estimates of such impulsive
systems are based on the techniques of external and in-
ternal ellipsoidal approximations of a convex hull of
the union of a family of ellipsoids.

In this paper we suggest another approach to the con-
struction of ellipsoidal estimates of the reachable set
of the linear impulsive control systems. To solve this
problem we study the related differential inclusion of a
classical type (without measure or impulsive controls)
and find ellipsoidal estimates of its trajectory tubes pro-
jections of which coincide with the upper ellipsoidal
bounds for reachable sets of the linear impulsive con-
trol system.

2 Problem Formulation
Consider a dynamical linear control system described

by a differential equation with impulsive controlu(·)

dx = A(t)xdt + b(t)du,

x ∈ Rn, x(t0 − 0) = x0, t ∈ [t0, T ].
(1)



Here we assume thatA(t) is a continuousn×n - matrix
function on [t0, T ], b(t) is n-vector continuous func-
tion.
The initial valuex0 is unknown but bounded with a

given bound.

x0 ∈ X0 = E(a,R), (2)

where

E(a, R) = {x0∈Rn|(x0 − a)′R−1(x0 − a) ≤ 1},

R is a symmetric positive definiten×n matrix,a ∈ Rn

is a center of the ellipsoidX0.
The impulsive controlu(t) (u(·) : [t0, T ] → R) is

continuous from the right, with bounded variation

Var
t∈[t0,T ]

u(t) = sup
{ti}

k∑

i=1

|u(ti)− u(ti−1)| ≤ µ, (3)

whereu = (u1, . . . , un); ti : t0< . . . <tk = T andµ
is a given positive number. We assume also thatu(t) is
increasing on[t0, T ].
DenoteU the class of impulsive functionsu(t) that

satisfied (3).
The solutionx(t) = x(t; t0, u, x0) of the control sys-

tem (1) under constraints (2)–(3) has form

x(t; t0, u, x0) = X(t)x0+

t∫

t0

X(t)X−1(τ)b(τ)du(τ),

whereX(t) is the Cauchy matrix solutioṅX = A(t)X
(X(0) = I).
Denote

X (t; t0,X0) =
⋃

u(·)∈U

⋃

x0∈X0

x(t; t0, u, x0).

The setX (t) = X (t; t0,X0) is actually the reachable
set of the impulsive differential system (1) from the ini-
tial setX0 at the instantt under restriction (3) for all
possible admissible controlsu(·).
The main problem of the paper is to find the ellip-

soidal estimateE(a+(T ), Q+(T )) for the reachable set
X (T ) basing on the special structure of the dataX0 and
restriction (3) on the impulsive control.

3 Main Results
Basing on results of ellipsoidal calculus [Chernousko,

1988; Kurzhanski and Valyi, 1997] developed for lin-
ear uncertain systems and discrete-time versions of the
funnel equations [Panasyuk, 1990] we present the mod-
ified state estimation approaches that allow to solve the
problem.

3.1 The Approach
Let us introduce a new time variable and a new state

coordinate [Rishel, 1965; Vinter and Pereira, 1988]:

η(t) = t +

t∫

t0

du(t), τ(η) = inf{t | η(t) ≥ η}.

Consider the auxiliary differential inclusion [Filip-
pova, 2005]

d

dη

(
z

τ

)
∈ G(τ, z), (4)

z(t0) = x0 ∈ X0, τ(t0) = t0, t0 ≤ η ≤ T + µ.

Here

G(τ, z)=
⋃

0≤ν≤1

{
(1−ν)

(
A(τ)z

1

)
+ν

(
b(τ)
0

)}
. (5)

Denotew = {z, τ} the extended state vector of the
system (4) and denotew(η, t0, w0) the solution of the
differential inclusion (4). Consider the trajectory tube
of this differential inclusion:

W(η) =
⋃

w0∈X0×{t0}
w(η, t0, w0), t0 ≤ η ≤ T + µ.

(6)
From the properties of trajectory tubes of ordinary dif-
ferential inclusion and the properties of the system (4)
we conclude that the following theorem is valid.

Theorem 1 [Filippova, 2005]. The reachable set
X (T ) is the projection ofW(T + µ) at the subspace
of variablesz: X (T ) = πzW(T + µ).

Applying Theorem 1 to construct the ellipsoidal esti-
mates of the reachable setX (T ) we need to construct
first the ellipsoidal estimates ofW(T + µ).

It should be noted that the technique of ellipsoidal cal-
culus can not be applied directly because the set-valued
function G(τ, z) is nonlinear on state variables. We
propose here an algorithm for estimating reachable sets
W(η) based on the theory of integral funnel equations
[Panasyuk, 1990]. The presented algorithm is simi-
lar to Euler’s numerical scheme for finding set-valued
states of differential systems.

3.1.1 Ellipsoidal Estimation ofW(T +µ) Let us
consider the particular case of the funnel equation re-



lated to (4)–(5) [Filippova, 2005; Panasyuk, 1990]:

lim
σ→+0

σ−1h
(
W(η+σ),

⋃
(w+σG(wn+1, w1, . . ., wn)|

w = (w1, . . . , wn+1) ∈ W(η)
)

= 0,
)

W(t0) = W0, η ∈ [t0, T + µ],
(7)

hereh(A,B) is theHausdorff distancebetween com-
pact setsA, B ⊆ Rn.
Under above mentioned assumptions the following

theorem is true (details may be found in [Filippova,
2005; Panasyuk, 1990]).

Theorem 2. [Filippova, 2005; Panasyuk, 1990]The
nonempty compact-valued functionW(η) is the unique
solution to the evolution equation(7).

From the properties of the solutions of the evolution
equation (7) we conclude that the following theorem is
valid.

Theorem 3. For all σ > 0 the following inclusion
holds

W(t0+σ)⊆ ⋃
0≤ν≤1

(E(a+(t0, σ, ν), Q+(t0, σ, ν))
t0+σ(1−ν)

)
+

+o(σ)B∗(0, 1), lim
σ→+0

σ−1o(σ)=0,

(8)
where

B∗(0, 1) = {x∈Rn+1| ‖x‖≤1},

a+(t0, σ, ν) = (I + σ(1− ν)A(t0))a + σνb(t0),

Q+(t0, σ, ν)=(I+σ(1−ν)A(t0))R(I+σ(1−ν)A(t0))′.
(9)

Proof. The proof of this theorem is carried out un-
der the scheme of proof of Theorem 3 [Filippova and
Berezina, 2008].

Remark. In the paper [Vzdornova and Filippova,
2006] we constructed the upper estimates of the union
of ellipsoids under condition that ellipsoids are nonde-
generate. Here the set

W(t0, σ) =
⋃

0≤ ν≤1

W(t0, σ, ν) (10)

with

W(t0, σ, ν)=
(E(a+(t0, σ, ν), Q+(t0, σ, ν))

t0 + σ(1− ν)

)
(11)

in (8) is the union of degenerate ellipsoids in the ex-
tended spaceRn+1 for each parameterν.

So we fix an arbitraryε>0 and put the degener-
ated ellipsoidW(t0, σ, ν) into nondegenerated ellip-
soidEε(w(t0, σ, ν), Oε(t0, σ, ν)):

W(t0, σ, ν) ⊆ Eε(w(t0, σ, ν), Oε(t0, σ, ν)), (12)

w(t0, σ, ν) =
(

a+(t0, σ, ν)
t0 + σ(1− ν)

)
,

Oε(t0, σ, ν) =
(

Q+(t0, σ, ν) 0
0 ε2

)
.

Therefore for anyε>0 the following inclusion is true

W(t0, σ)⊂Wε(t0, σ)=
⋃

0≤ν≤1

Eε(w(t0, σ, ν),Oε(t0, σ, ν)).

(13)

3.1.2 Auxiliary Results. In order to construct the
external estimate ofWε(t0, σ), we consider two auxil-
iary problems.

Auxiliary Problem AP1. Find the ellipsoid
E+

ε (w+(t0, σ), O+(t0, σ)) such that

Wε(t0, σ) ⊂ E+
ε (w+(t0, σ), O+(t0, σ)). (14)

Therefore from (13) we will have also

W(t0, σ) ⊂ E+
ε (w+(t0, σ), O+(t0, σ)). (15)

Remark. Because the setW(t0, σ) is compact and
functionsa+(t0, σ, ν) andQ+(t0, σ, ν) are continuous,
the equality

lim
ε→+0

h(W(t0, σ),Wε(t0, σ)) = 0

is true.

Auxiliary Problem AP2. Given two ellipsoids
E(a1, Q1) and E(a2, Q2), (ai 6= 0, Qi = Q′i > 0,
i = 1, 2), find an external ellipsoidE(a+, Q+) such
that

E(a1, Q1) ∪ E(a2, Q2) ⊆ E(a+, Q+).

The following lemmas are true.

Lemma 1. For given a1, a2, Q1, Q2 (ai 6= 0,
Qi = Q′i > 0, i = 1, 2) the following inclusions hold

E(a1, Q1) ⊂ E(a1, Q1) ∪ E(2a2 − a1, Q1) ⊂
⊂E(a1, Q1) + E((a2−a1), (a2−a1)(a2 − a1)′)⊂
⊂E(a2, (1+p)Q1+(1+p−1)(a2−a1)(a2−a1)′)=

= E(a2, Q̃1), p ∈ (0, ((a2 − a1)′Q−1
1 (a2 − a1))

1
2 ].



Proof. For any matrixQ = Q′ > 0 and any vector
a ∈ Rn, a 6= 0 the following formula is valid [Vazhent-
sev, 2004]

co (E(0, Q)∪E(2a,Q))=E(0, Q)+E(a, aa′). (16)

The matrix of the ellipsoidE = E(a,Q+) which con-
tains the sumE(0, Q) + E(a, aa′) may be found as in
[Chernousko, 1988; Kurzhanski and Valyi, 1997]:

Q+ = (p−1 + 1)Q + (p + 1)aa′, (17)

where parameterp ∈ (0, (a′Q−1a)
1
2 ]. The proof of this

lemma following from formulaes (16)–(17).

Lemma 2. [Vzdornova and Filippova, 2006]The in-
clusion is true

E(a2, Q̃1) ∪ E(a2, Q2) ⊂ E(a2, Q
+) = E(a+, Q+),

(18)

Q+ = Q̃
1
2
1 M ′Õ+MQ̃

1
2
1 , Õ+ = diag{µ1, . . . , µn},

whereµi = max{1, λi}, λi are the eigenvalues of
matrix Q̃−1

1 Q2, M is the orthogonal matrix such that

M ′Q̃−
1
2

1 Q2Q̃
− 1

2
1 M=diag{λ1, . . ., λn}.

Proof. Details of the proof may be found in [Vz-
dornova and Filippova, 2006; Vzdornova, 2007].

Lemma 3. The ellipsoid E(a+, Q+) defined in(18)
is the solution of the Auxiliary Problem AP2:

E(a1, Q1) ∪ E(a2, Q2) ⊂ E(a+, Q+).

Proof. The proof of this lemma follows directly from
the construction of the ellipsoidE(a+, Q+).

The following example illustrates the construction of
the external ellipsoidal estimate of the union of two el-
lipsoids with different centers and matrices (the solu-
tion of Auxiliary Problem AP2).

Example 1. Consider two ellipsoidsE(a1, Q1) and
E(a2, Q2) . Herea1 = (0, 0.1), a2 = (0.1, 0),

Q1 =
(

1.09 0.9
0.9 9

)
, Q2 =

(
1 0
0 9

)
.

Figure 1 shows the ellipsoidE(a1, Q1) (it is marked
by number1), ellipsoid E(a2, Q2) (it is marked by
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Figure 1. Ellipsoidal estimates of two ellipsoids with different cen-

ters

number2) and the external ellipsoidE(a+, Q+) ⊃
E(a1, Q1) ∪ E(a2, Q2) (it is marked by number3).

Algorithm of ellipsoidal estimation ofWε(t0, σ) is
given below.

Algorithm 1.
We fix arbitraryε > 0 andσ > 0. Subdivide the seg-

ment[0, 1] into subsegments[νj , νj+1] whereνj = jh
(j = 0, . . . , m), h = 1/m, ν0 = 0, νm = 1.

For given X0 = E(a,R) we find parame-
ters a+(t0, σ, νj), Q+(t0, σ, νi) of ellipsoids
E(a+(t0, σ, νj), Q+(t0, σ, νj)) defined in (9) (Theo-
rem 3) forj = 0, . . . , m.

Given

{E(a+(t0, σ, νj), Q+(t0, σ, νj))| j = 0, . . ., m}

we findm + 1 ellipsoids

Eε(w(t0, σ, νj), Oε(t0, σ, νj)), j = 0, . . . ,m (19)

using (12) in the extended spaceRn+1.
To solve the Auxiliary Problem AP1 (14) we need to

find the ellipsoidE+
ε (w+(t0, σ), O+(t0, σ)) so that

⋃

j

Eε(w(t0, σ, νj), Oε(t0, σ, νj)) ⊂

⊂ E+
ε (w+(t0, σ), O+(t0, σ)).

Step 1. Consider the ellipsoids defined in (19) for
j = 0 andj = 1, namely

Eε(w(t0, σ, ν0), Oε(t0, σ, ν0)),
Eε(w(t0, σ, ν1), Oε(t0, σ, ν1)).

Basing on the solution of the Auxiliary Problem AP2
we find the ellipsoidE+1

ε (w+(t0, σ), O+(t0, σ)) such



that

Eε(w(t0, σ, ν0), Oε(t0, σ, ν0)) ∪
∪ Eε(w(t0, σ, ν1), Oε(t0, σ, ν1)) ⊂
⊂ E+1

ε (w+(t0, σ), O+(t0, σ)).

Step 2.We take two ellipsoids:

E+1
ε (w+(t0, σ), O+(t0, σ)),

Eε(w(t0, σ, ν2), Oε(t0, σ, ν2)), (j = 2).

As at the Step 1 we find the ellipsoid
E+2

ε (w+(t0, σ), O+(t0, σ)) such that

E+1
ε (w+(t0, σ), O+(t0, σ)) ∪

∪ Eε(w(t0, σ, ν2), Oε(t0, σ, ν2)) ⊂
⊂ E+2

ε (w+(t0, σ), O+(t0, σ)).

Step 3.Next steps continue iterations 1–2.
At the end of the process we will get the external esti-
mateE+

ε (w+(t0, σ), O+(t0, σ))

⋃

j

Eε(w(t0, σ, νj), Oε(t0, σ, νj)) ⊂

⊂ E+
ε (w+(t0, σ), O+(t0, σ)).

Therefore we will have the estimate of the reachable
setWε(t0, σ)

Wε(t0, σ) ⊂ E+
ε (w+(t0, σ), O+(t0, σ))

which provides the solution of Auxiliary Prob-
lem AP1 (14).

3.2 Algorithm of Ellipsoidal Estimation of reach-
able setX (T ).

Basing on the previous results we may formulate the
following scheme that gives the external ellipsoidal es-
timate ofX (T ) of the system (1).

Algorithm 2. We fix arbitraryε > 0 and subdivide
the time segment[t0, T +µ] into subsegments[ti, ti+1]
whereti = t0 + iσ (i = 1, . . . , k), σ = (T +µ− t0)/k,
tk = T + µ.

Step 1.Consider the time segment[t0, t1]. We take the
initial setX0 = E(a,R) in the Algorithm 1 and find the
ellipsoidE+1

ε (w+(σ), O+(σ)) such that

W(t0, σ) ⊆ E+1
ε (w+(σ), O+(σ)),

where setsW(t0, σ) are defined in (10).
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Figure 2. The dynamics of reachable setsX (T )

Step 2. Consider the next time interval[t1, t2].
The ellipsoidE+1

ε (w+(σ), O+(σ)) is considered as
the start ellipsoid at the momentt1 for the Algo-
rithm 1. Apply Algorithm 1 again. The resulted set
E+2

ε (w+(σ), O+(σ)) will be the start ellipsoid for the
next momentt2 in the Algorithm 1.

Step 3.Repeat Step 2 for each momentti : ti = t0+iσ
(i = 2, . . . , k). At the end of the process the ellipsoid
E+

ε (w+, O+) will be obtained so thatW(T + µ) ⊆
E+

ε (w+, O+).

Step 4. By Theorem 1 find the projection of the
ellipsoid Eε(w+, O+) at the subspace of variables
{z1, . . . , zn}

E(a+(T ), Q+(T )) = πzEε(w+, O+).

Therefore we will have the external estimate
E(a+(T ), Q+(T )) of the reachable setX (T ) of
system (1) from initial setX0 under restriction (3).

Example 2.Consider the following impulsive control
system:

{
dx1(t) = x2(t)dt,
dx2(t) = du2(t),

0 = t0 ≤ t ≤ T. (20)

The impulsive controlu(t) is continuous from the
right, with variationVart∈[0,T ] u(t) ≤ 1. We assume
also thatu(t) is increasing on[0, T ].
The initial statesx0 are unknown but belong to the

following ellipsoidX0 = E(0, R),

x0 ∈ X0 = E(0, R), R =
(

4 0
0 1

)
.

The exact reachable set are presented at Figure 2 for
some values ofT . The tube of trajectories of the system
(20) is indicated at Figure 3.
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Figure 3. Trajectory tubeX (t) for t ∈ [0, 1.7]

Figure 4 illustrates the external estimation algo-
rithm 2. The external ellipsoidal estimates and exact
reachable set are presented at Figure 4.

4 Conclusion
We consider the problems of state estimation for dy-

namical control systems with impulsive control and
with unknown but bounded initial state.
Basing on results of ellipsoidal calculus developed for

linear uncertain systems and discrete-time versions of
the funnel equations we present the modified state esti-
mation approaches that allow to solve the problem.
Suggested approach opens the way to solve the prob-

lem of estimating of the uncertain states of impulsive
control systems under state constraints.
Examples and numerical results related to procedures

of set-valued approximations of trajectory tubes and
reachable sets are also presented.
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