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Abstract
This work concentrates on the lateral oscillations in

vehicles, also called shimmy, with a particular empha-
sis on aircraft. A mathematical model of a nose landing
gear is discussed with geometric detail that has been
mostly neglected in the past research. Stability criteria
for the shimmy-free operation of the landing gear are
derived using linear stability analysis. Nonlinear analy-
sis is used not only to study the qualitative behaviour of
the Hopf bifurcation but also to analyze the system be-
yond the Hopf bifurcation. The manuscript concludes
with suggestions for future research.

1 Introduction
Wheeled vehicles, including automobiles, pulled trail-

ers, motorcycles, and aircraft, occasionally experience
self-excited, lateral oscillations due to a variety of flex-
ibilities involved in their design. This phenomenon,
conventionally referred to asshimmy, results in wear-
ing of the related mechanical components and, hence,
is undesirable in the operation of the vehicle. In an
aircraft, dealing with shimmy may incur heavy main-
tenance costs. In extreme cases, the induced vibration
can be so violent as to limit the pilot’s ability to see and
read the instrument panel. Yet, the onset of shimmy in
aircraft is far from fully understood, which provides the
motivation for this work.
A landing gear mainly consists of a strut attached

to the fuselage of the aircraft that includes oleos
(dampers), torque-links, steering mechanism, etc. The
strut is coupled to the ground via one or more wheels
with flexible tyres mounted on an axle. Figure 1 shows
schematic side, back and top views of a nose landing
gear. Here, the strut, which is inclined to the vertical
at arake angle φ, rotates about its axis with asteering
angleψ. The strut is connected to the wheel’s axle with
a mechanical trail (caster) of lengthe. The presence of
the non-zero rake angleφ in the landing gear induces
an effective caster lengtheeff , as well as a tiltγ of the
wheel(s) for non-zero steering angleψ. Furthermore,
theswivel angle θ of the wheel with the ground is dif-
ferent from the steering angleψ; see Sec. 3 for details.

Note that we are using throughout one of the conven-
tionally accepted coordinate systems for aircraft anal-
ysis. Specifically, the positivex-axis points towards
the backward direction of the aircraft, thez-axis is the
upward normal to the (flat) ground, and they-axis com-
pletes the right-handed coordinate system.
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Figure 1. Schematic of a nose landing gear of an aircraft.

The structure shown in Fig. 1 closely resembles the
landing gear of an aircraft, which is characterized by a
moderate rake angle (about10o), a small caster length
e (about0.1 m for a mid-size passenger aircraft), and
large torsional stiffness and damping due to the hy-
draulic steering mechanism. For comparison, motor-
cycles generally have large rake angles (possibly even
larger than30o) and a small caster length, while trail-
ers have zero rake angle and a long caster length (up
to several metres). Importantly, both motorcycles and
trailers generally have very low torsional damping.



The overall model consists of both the geometry of the
vehicle and a choice of tyre model. We consider here
an aircraft landing gear, characterized by typical values
of the parameters as discussed above. In particular, we
consider a model that includes geometric effects of a
non-zero rake angle. While the rake angle of a typical
aircraft landing gear is indeed non-zero, no previous
study of shimmy in aircraft has taken proper consider-
ation of a non-zero rake angle. In fact, most authors set
the rake angle to zero; see also Section 2. The wheel-
ground interaction is modelled by the well-established
stretched string model from [von Schlippe and Diet-
rich, 1947] of an elastic tyre. Throughout we use real-
istic parameters for geometry and tyre modelling taken
from [Somieski, 1997] and summarized in Table 1. The
vertical forceFz on the gear and the forward velocity
V of the aircraft are identified as two key parameters
influencing the stability of the gear. They are used as
free parameters in this study.
From a dynamical systems point of view, the onset of

shimmy oscillations is via the transition through a Hopf
bifurcation when a parameter is changed. This leads
to the onset of periodic lateral motion of the wheel. In
this paper we study the Hopf bifurcation in dependence
on the vertical forceFz and the velocityV to identify
the region where shimmy oscillations may occur. We
also discuss the criticality of the Hopf bifurcation as
a means of determining the stability of the bifurcating
oscillations. This information is important for deter-
mining whether the landing gear is operationally safe.
This paper is organized as follows. Section 2 gives a

brief review of the literature on shimmy with particu-
lar emphasis on aircraft. Details of the mathematical
model of a nose landing gear are introduced in Sec. 3.
Linear stability analysis of the mathematical model is
discussed in Sec. 4, as is its nonlinear dynamics in
Sec. 5. Finally, Sec. 6 summarizes the work with sug-
gestions for future research.

2 Brief discussion of the literature
We briefly describe some important works in the area

of shimmy analysis in vehicle dynamics with particular
relevance to aircraft; further reading can be found in
the survey papers [Dengleret al., 1951; Smiley, 1957;
Pritchard, 1999].
Even though elastic tyres have been in use for over a

century, modeling a rolling tyre still remains one of the
most difficult problems in the area of vehicle dynamics.
Particularly, the complications that arise in the tyre-
ground contact area along with the nonlinear elastic na-
ture of the rubber make the modeling process difficult.
Broulhiet, in 1925, published his seminal work on the
effect of tyre mechanics on shimmy [Broulhiet, 1925].
The principles stated in his work still form the basis in
studying these self-excited oscillations [Dengleret al.,
1951]. Broulhiet first described the concept ofside-slip
and suggested that the energy for the self-sustenance of
the shimmy oscillations comes from the tyre mechan-

ics via the side-slip. A number of tyre theories were
reported in the last half a century, but only a few of
them have been found to be consistent with the exper-
imental data, notable examples are [Moreland, 1925],
[Pacejka, 1965; Pacejka, 1966] and [von Schlippe and
Dietrich, 1947]. In the model in Sec. 3 we use the
stretched string model of [von Schlippe and Dietrich,
1947], which is widely accepted as a successful model
of the kinematics of an elastic tyre.

Several researchers studied the shimmy phenomenon
in aircraft using experimental, analytical and numerical
techniques [Baumann, 1995; Besselink, 2000; Glaser
and Hrycko, 1995; Krabacher, 1995; Smiley, 1957].
Apart from correlating different tyre theories, [Smiley,
1957] studied shimmy for three different cases of land-
ing gear structures. While one of the cases has a non-
zero rake angle, its nonlinear geometric effects were
not included in the model. The paper [Smiley, 1957]
contains a stability analysis and discusses a systematic
way of modeling the geometrical aspects of the strut
in an aircraft landing gear. More recently, [Somieski,
1997] studied shimmy as a nonlinear dynamics phe-
nomenon for a nonlinear set of ODEs describing a nose
landing gear with zero rake angle. Here, time domain
analysis showed a case ofsupercritical Hopf bifurca-
tion leading to a set of stable limit cycles past the bi-
furcation point. In fact, for simplicity of the models
almost all past research on aircraft shimmy was per-
formed for a zero rake angle. This means that geomet-
rical and, hence, nonlinear aspects of a nonzero rake
angle have not been taken into account.

Shimmy has also been studied in a general wheeled
vehicle setting. We mention here a number of ref-
erences that use nonlinear dynamics methods, which
mostly concern the case of a pulled trailer. Pacejka
[Pacejka, 1966] studied shimmy in the presence of fric-
tion and freeplay in the kingpin. [Stépán, 1991] studied
shimmy for a trailer configuration with zero torsional
damping at the rotation axis and with zero rake angle
for both rigid and elastic tyres. He showed that the
Hopf bifurcation responsible for the onset of oscilla-
tions is subcritical in this case, so that the system may
suddenly jump to large amplitude oscillations. A stabil-
ity criterion in terms of the caster length was derived in
[Stépán, 1998]. The transition from sub- to supercriti-
cal Hopf bifurcation as the lateral damping is increased
was found in [Takacset al., 2007] to involve a saddle-
node Hopf bifurcation.

3 Mathematical model

Consider the landing gear assembly shown in Fig. 1.
Here, the combined mass of the aircraft’s fuselage and
wings is assumed to be a single lumped mass that ex-
erts a vertical forceFz on the gear. According to von
Schlippe’s stretched string model, the kinematic rela-
tionship between the swivel angleθ and the lateral de-
formationλ of the leading edge of the contact patch is



given by

λ̇+
V

L
λ = V θ + (eeff − h) θ̇. (1)

Our model considers moments due to the stiffness and
damping of the strut, and a damping force due to tyre
tread width. Using Newton’s second law, the equations
for the landing gear model considered here are given
by [Somieski, 1997] as

Iz ψ̈ = MF1
(ψ)+MD1

(ψ̇)+M2(λ)+MDλ
(θ̇). (2)

Here the momentMF1
due to the torsional stiffness of

the strut is given by

MF1
(ψ) = c ψ, (3)

and the momentMD1
due to the torsional damping of

the strut is given by

MD1
(ψ̇) = k1 ψ̇. (4)

The last two terms in Eq. (2) model the tyre interac-
tion with the ground. Specifically, the combined mo-
mentM2 due to the tyre’s restoring forceFtλ

and self-
aligning momentMtα

, is given by

M2(λ) = Mtα
− eeff Ftλ

, (5)

where

Mtα
=

[

FzCMα

18
sin (18 α) if |α| ≤ αg,

0 if |α| > αg,
(6)

and

Ftλ
=

[

CFα
Fzα if |α| ≤ δ,

CFα
Fz δ sign(α) if |α| > δ.

(7)

Finally, the momentMDλ
due to the tyre’s tread width

damping is given by

MDλ
(θ̇) =

k2

V
θ̇. (8)

The slip angleα is related to the lateral deformationλ
by α = tan−1

(

λ
L

)

. The rake angleφ enters into our
model via the effective caster length

eeff = e cosφ+R tanφ+ e sinφ tanφ, (9)

whereR is the radius of the tyre; note thateeff = e for
φ = 0. Here,eeff = 0.1788 m for parameters in Table

1, which is about50% increase ine for φ 6= 0. Further-
more,φ induces the geometrical relationθ = ψ cos (φ)
between the steering angleψ and the swivel angleθ.
Finally, φ 6= 0 implies that steering results in a tilt an-
gle γ 6= 0 of the tyre, but this effect is not taken into
account in the tyre model considered here. In the above
equations,c, k1, k2, CMα

andCFα
are experimentally

measured constants as detailed in Table 1.

4 Linear stability analysis
The linearization of Eqs. (1) and (2) w.r.t. the state

vectorx =
(

ψ, ψ̇, λ
)T

is given by the Jacobian matrix

Df (0) =





0 1 0
c1 c2 c3
V c4 c5



 , (10)

where

c1 =
c

Iz
, (11)

c2 =
k1

Iz
+

k2

V Iz
, (12)

c3 =
(CMα − eeff CFα)Fz

Iz L
, (13)

c4 = eeff − h, (14)

c5 =
−V

L
. (15)

Hence, stability is determined by the characteristic
equation

s3 − (c2 + c5)s
2

+ (c2c5 − c1 − c3c4)s+ (c1c5 − V c3) = 0. (16)

With the Routh-Hurwitz stability criterion it can be
concluded from Eq. (16) that the linearized system is
stable if

c2 + c5 < 0, (17)

c2c5 − c1 − c3c4 > 0, (18)

c1c5 − V c3 > 0, (19)

[(c1c5 − V c3)

+ (c2c5 − c1 − c3c4) (c2 + c5)] < 0. (20)

With the definitions (11)–(15) of the constantsc1 · · · c5
the above stability criteria are complicated algebraic
expressions when expressed in all generality in all pa-
rameters. Hence, a parameter dependent linear stability
analysis, even for realistic sub-cases of interest for air-
craft shimmy, is quite involved and beyond the scope
of this paper.
Instead, we consider here the special case where the

strut does not exert stiffness and damping and that there



is no damping from the tyre’s tread. This means that
k1 = 0, k2 = 0 andc = 0, so that Eqs. (17)–(19) eval-
uate toV

L
> 0, which is always satisfied. Therefore,

stability is determined exclusively by Eq. (20), which,
since(CMα − eeff CFα) < 0, reduces to

eeff > h+ L. (21)

This is exactly the criterion derived in [Stépán, 1998]
for φ = 0 and, hence,eeff = e, which says that, in the
absence of stiffness and damping in the landing gear
and tyre, a minimum caster length is required to avoid
shimmy oscillations. While the assumption of zero
stiffness and damping is not realistic for an actual air-
craft landing gear, it shows that our model reproduces
the reported stability property for this case (which is
more realistic for a pulled trailer).
More generally, linear stability analysis can assist de-

signers in determining the parameter regions defining
stability. Specifically, damping and stiffness charac-
teristics, caster length, and rake angle could be opti-
mised to ensure that the landing gear operates safely
away from the stability boundary. However, a nonlin-
ear analysis is also required, for example, to study the
properties of ensuing shimmy oscillations and their de-
pendence on parameters.

5 Nonlinear dynamics
To analyze the behaviour of Eqs. (1)–(2) beyond the

Hopf bifurcation we perform a numerical bifurcation
analysis with the software AUTO [Doedelet al., 1991].
Specifically, we follow periodic orbits and the Hopf bi-
furcation itself in the vertical forceFz and the forward
velocityV .
For Fz andV as given in Table 1 the origin (x = 0,

which models the tyre rolling in a straight line) is
asymptotically stable, meaning that any perturbation
decays ast tends to∞. However, the stability of the
origin changes when the vertical forceFz is changed.
Specifically, as seen in Fig. 2(a), atFz ≈ 9231 N there
is a Hopf bifurcation that results in periodic oscillations
for Fz beyond the bifurcation point. In terms of the
landing gear dynamics, the Hopf bifurcation marks the
onset of shimmy. It is important to note that the Hopf
bifurcation is supercritical, that is, the bifurcating pe-
riodic oscillations are asymptotically stable. This im-
plies that a sudden increase of the vertical forceFz , for
example, during the landing phase of an aircraft, may
trigger shimmy oscillations. A related effect can be ob-
served in motorcycles: stability may be lost immedi-
ately after the front wheel comes down after a manoeu-
ver such as a jump.
Figure 2(b) shows that the origin also loses its stability

under variation of the forward velocityV . Specifically,
atV ≈ 74.4 m/s stable oscillations are born in a super-
critical Hopf bifurcation. Note that these oscillations
disappear again in another supercritical Hopf bifurca-
tion asV is increased pastV ≈ 155.0 m/s. The disap-
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pearance of shimmy with increasing speed has indeed
been observed in practice.
Figure 3 shows a two-parameter continuation of the

curve of Hopf bifurcation in the(V, Fz)-plane. It di-
vides this parameter space into two region for which the
zero equilibrium is stable and unstable, respectively.
For Fz < 8405 N the zero equilibrium is always sta-
ble, which means that there are no shimmy oscillations
for any value of the velocityV . For Fz > 8405 N,
on the other hand, there exists a range of velocities (in
the shaded region) where the zero equilibrium is unsta-
ble. Our continuation shows that the Hopf bifurcation
is supercritical along the curveH , so that one observes
stable shimmy oscillations near this stability boundary;



cf. Fig. 2(b). Further inside the shaded region the asso-
ciated stable periodic orbit may undergo further stabil-
ity changes in a variety of bifurcation scenarios. This
would result in more complicated lateral motions of the
wheel, which is an interesting topic beyond the scope
of this paper.

5.1 Hopf bifurcation analysis
We investigated the criticality of the Hopf bifurca-

tion by means of a centre manifold analysis, details of
which will appear elsewhere. This analysis suggests
that the Hopf bifurcation is supercritical in the range
of realistic parameter values that correspond to an air-
craft leading gear, which confirms the numerical ob-
servation in Fig. 2. By contrast, [Stépán, 1998] and
[Takacset al., 2007] reported (for the case of a trailer)
that the Hopf bifurcation is subcritical in the absence
of torsional stiffness and damping. We find that our
model also displays subcritical Hopf bifurcations for
zero torsional stiffness and damping. However, very
small amounts of torsional damping already result in a
supercritical Hopf bifurcation; this transition is associ-
ated with a saddle-node Hopf bifurcation. This agrees
with the result in [Takacset al., 2007] concerning the
influence of lateral damping at the kingpin of the trailer.

6 Summary and future work
We presented a model for an aircraft nose landing gear

that includes geometric effects due to a non-zero rake
angle. The Hopf bifurcation that corresponds to the
onset of shimmy was continued in the vertical force
and the forward velocity of the aircraft. The onset of
shimmy oscillations was found to be supercritical for
realistic values of the parameters, mainly due to strong
torsional damping.
There are several directions for future research. First

of all, we plan to assess the influence of other param-
eters on the onset of shimmy. This study will include
operational parameters, for example, the contact patch
lengthh (which is related to tyre pressure), as well as
design parameters of the landing gear itself, such as
the caster length and the rake angle. Secondly, we will
consider interdependencies between parameters. For
example, the contact patch lengthh varies with verti-
cal forceFz, which in turn decreases with an increas-
ing velocity V . Furthermore, the velocityV itself is
not constant but changes in characteristic ways during
taxiing, take-off and landing. Finally, effects that are
presently not modelled will be included at a later stage;
examples are bending and lateral motion of the strut,
and the coupling of the nose landing gear to the other
gears via the fuselage.
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Table 1. System parameters and their values as used in the modeling.

Parameter Description Value

structure parameters

e caster length 0.12 m

c torsional stiffness of strut −1.0x105 N m rad−1

k1 torsional damping of strut −45.0 N m s rad−1

Iz moment of inertia of strut 1.0 kg m2

φ rake angle 0.1571 rad(9o)

tyre parameters

R radius of nose wheel 0.362 m

h contact patch length 0.1 m

k2 damping coefficient of elastic tyre −270.0 N m2rad−1

CMα
self-aligning coefficient of elastic tyre −2.0 m/rad

CFλ
restoring coefficient of elastic tyre 20.0 rad−1

L relaxation length 0.3 m

δ restoring force limit 0.0873 rad(5o)

αg self-aligning moment limit 0.1745 rad(10o)

continuation parameters

Fz vertical force on the gear 9000 N

V forward velocity 70.0 m s−1


