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Abstract
We demonstrate by electronic circuit experiments

the feasibility of an unstable control loop to stabilize
torsion-free orbits by time-delayed feedback control.
Our experiments show the importance of the coupling
scheme for global control performance.
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1 Introduction
Control of complex and chaotic behaviour has been

one of the most rapidly developing topics in applied
nonlinear science for more than one decade (cf. [Schus-
ter, 1999] and references therein). Contrary to tradi-
tional control schemes which have been developed by
engineers and applied mathematicians for more than
half a century the emphasis of non–invasive methods
has lead to new concepts like time–delayed feedback
techniques [Pyragas, 1997]. While such a concept is
easy to implement in experiments to stabilise time peri-
odic states, a deeper theoretical understanding has been
gained only recently (cf. e.g. [Just et al., 1997]). So far
the control performance has been evaluated on the basis
of linear stability analysis but no systematic treatment
of global properties, like the dependence of the control
performance on perturbations or the size of basins of at-
traction is available in the literature. Although there ex-
ist meanwhile software packages for analysing global
features of differential–difference equations [Engel-
borghs, Luzyanina and Rose, 2000] such tools are
of limited use since time–delayed feedback control
mainly targets at systems where a proper mathemat-

ical model is not available. Thus generic properties
of the control system are of interest and such features
are difficult to estimate from numerical simulations.
We will illustrate the experimental relevance with elec-
tronic circuit experiments.
Time-delayed feedback methods are based on measur-

ing a time signal s(t). The control force is generated by
a time-delayed difference signal:

F (t) = k (s(t)− s(t− τ)) (1)

For proper choice of the control amplitude k stable pe-
riodic oscillations can be achieved. Such a scheme is
non-invasive if the delay time τ is chosen to coincide
with the period of the target state. Once the system tra-
jectory has settled on the UPO the control force F (t)
vanishes by construction.
A large number of successful applications of TDFC

have been reported in various fields of physics, en-
gineering, chemistry and biology [Schuster, 1999].
While TDFC is a convenient technique for controlling
chaos, a serious drawback called the ’odd number lim-
itation’ became evident [Nakajima, 1997] predicting
that in driven systems UPOs with an odd number of
real unstable Floquet multipliers can never be stabi-
lized by conventional TDFC. In other words only UPOs
with finite torsion can be stabilized [Just et al., 1997].
To overcome this limitation Pyragas introduced the
counterintuitive idea of introducing an unstable time-
delayed feedback controller (UTDFC) [Pyragas, 2001].
Such a controller has an additional unstable loop vari-
able which artificially increases the number of the real
Floquet multipliers to become even and, thus, avoids
the odd number limitation.



2 Unstable van der Pol oscillator
A prominent paradigm showing such torsion-free un-

stable orbits is the unstable van der Pol oscillator which
is described by the following equations of motion:

ẋ(t) = −y(t) + εx(t) + x3(t)/3, (2a)
ẏ(t) = x(t) . (2b)

Here, ε is the bifurcation parameter of system, and the
time scale is normalized to the inverse oscillator fre-
quency. Equation (2) differs from that for the conven-
tional van der Pol oscillator merely by the sign of the
nonlinear coefficient. For ε < 0, this equation has two
coexisting solutions, a stable fixed point at the origin
x = y = 0, and an unstable limit cycle with period
τ = 2π + O(ε), amplitude 2

√
−ε + O(ε), and a real

positive Floquet exponent λ = −ε+O(ε3/2). The real
positive Floquet exponent indicates that the limit cycle
is unstable and shows no torsion.

3 Applying the concept of an unstable controller
We assume that x is a system variable accessible in

experiment. To stabilize the unstable periodic orbit ap-
pearing for ε < 0 we consider the following control
algorithm:

ẋ(t) = −y(t) + εx(t) + x3(t)/3 + w(t)f(x(t))(3a)
ẏ(t) = x(t) (3b)
ẇ(t) = λcw(t)− k(x(t)− x(t− τ))f(x(t)) .(3c)

The term wf(x) in Eq. (3a) is the control signal per-
turbing the x-variable. The specific form of this cou-
pling is given by the function f(x) and will be speci-
fied later. Equation (3c) describes an unstable delayed
feedback controller with λc > 0. Here w(t) is the
dynamical variable of the controller and k determines
the feedback strength. Note that the control scheme
does not change the solution of the free system cor-
responding to the unstable orbit of period τ , since for
x(t) = x(t− τ) Eq. (3c) is satisfied by w = 0 and the
control signal w(t)f(x(t)) in Eq. (3a) vanishes.
We just mention that in a recent paper [Pyragas, Pyra-

gas and Benner, 2004] Eq. (3) has been considered as

Figure 1. Bifurcation diagram of the unstable van der Pol oscillator.
For ε < 0 the stable fixed point at the origin coexists with an UPO
of amplitude 2

√
−ε. For ε > 0 there is only an unstable fixed

point at the origin.

a paradigm of a subcritical Hopf bifurcation showing
an unstable torsion-free limit cycle. The possibility to
stabilize such an orbit was explored, both analytically
and numerically, for the specific choice of a linear cou-
pling function, f(x) = x, and successful control was
achieved.

4 Design of the experiment
In order to probe the concept of an unstable controller

in experiment we designed an autonomous electronic
circuit which is related to Eq. (3).
Fig. 2 shows the equivalent circuit scheme of the un-

stable van der Pol oscillator system with an unstable
controller based on active elements. The upper part
corresponds to the unstable van der Pol oscillator. The
linear terms were implemented by operational ampli-
fiers TL084 and the nonlinearities by AD633 multi-
plier ICs. The fundamental period T of the unstable
van der Pol oscillator was set to 0.628 ms by trimming
the time constants of the integrators, so that the result-
ing dynamics was easy to handle with our equipment.
The lower part of Fig. 2 marked by the dashed frame
shows the unstable control loop. It was designed from
the same type of active components. The control am-
plitude k and the positive exponent λc as well as the
bifurcation parameter ε of the unstable van der Pol os-
cillator were simply determined by the gain of the elec-
tronic amplifiers which were tuned by resistors.
For the time-delayed signal, we designed a digital de-

lay system based on a combination of an analog-to-
digital converter (ADC) of 8-bits resolution, a shift reg-
ister (”FIFO”) and a digital-to-analog converter (DAC).
The accuracy of the delay time could be set to bet-
ter than 1% of T by using a clock frequency of a few
hundred kHz. The output signal of the delay system
is smoothed by a low-pass filter with a bandwidth of
about 10% of the clock frequency.
In our experiment the coupling function f(x) of the
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Figure 2. Block diagram of the van der Pol oscillator with unstable
control loop (setup built from active components).



control algorithm Eq. (3) was chosen to be either a
linear function of x(t) or of sigmoidal type f(x) =
sign(x). In the linear case the coupling function was
just given by the voltage representing the x-component.
In the sigmoidal case the coupling function was exper-
imentally realized by means of a comparator.
To ensure accurate initial conditions we used elec-

tronic switches parallel to each of the integrator out-
puts which generate the variables x(t), y(t) and w(t).
These switches allowed to apply adjustable constant
voltages x0, y0 and w0, respectively, and a precise tim-
ing. Thus, when switching on the system at t = 0,
the variables x(t) and y(t) started from a well-defined
state. At about one cycle later the feedback loop gen-
erating the control signal was switched on, simultane-
ously with the controller variable w(t). Such a time-
lag was necessary to obtain an appropriate delayed sig-
nal reflecting the dynamics of the uncontrolled system
close to the initial state. Note that the control generally
failed when the feedback is switched on earlier than
one cycle or later than three or four cycles. This is un-
derstandable since in the former case a proper delay
signal has not yet developed while in the latter case the
unstable system has already escaped too far away from
the target state. The data were recorded by a digital os-
cilloscope with a sampling rate higher than 100 MHz
and with file length larger than 216 words.
This setup allowed to study in detail the basin of at-

traction of the controlled state. In the following sub-
section we describe control experiments for both linear
and sigmoidal coupling.

5 Experimental results
5.1 Linear coupling
As pointed out in [Pyragas, Pyragas and Benner,

2004] for the most trivial choice of the coupling func-
tion, f(x(t)) = const the system variable x(t) and
the unstable control loop variable w(t) immediately de-
couple and the control fails. The next simplest cou-

Figure 3. Linear coupling: Time series of the system variable x(t)
(line) and the control loop variable w(t) (dashed) for fixed pa-
rameters ε = −0.1, k = 0.3 and λc = 0.051, but dif-
ferent initial conditions. (a) Initial conditions close to the UPO
(x0, y0, w0) = (0.6, 0, 0): control successful. (b) Initial con-
ditions close to the origin (x0, y0, w0) = (0.1, 0, 0): control
fails.

pling is of linear type. It was shown by both analyt-
ical and numerical investigations that such an unsta-
ble time-delayed feedback controller can stabilize the
torsion-free UPO of the unstable van der Pol oscillator.
The first step was to confirm this result in experiment.

We adjusted the parameters to ε = −0.1, k = 0.3,
and λc = 0.051. Fig. 3(a) shows a time series of
x(t) and w(t) for the initial conditions (x0, y0, w0) =
(0.6, 0, 0), which is pretty close to the UPO. The feed-
back loop was switched on one period later in order to
generate a proper delay signal x(t− τ). This switching
defines time zero in Fig. 3. After a transient process of
about 2500 time-steps a stable oscillation in x appears
and the control variable w(t) converges to zero. The
UPO is stabilized, and the control force does not af-
fect anymore the stabilized van der Pol oscillator. The
situation changes dramatically for initial conditions far
away from the UPO. In Fig. 3(b) we have chosen the
initial conditions (x0, y0, w0) = (0.1, 0, 0). The x(t)-
component immediately starts oscillating between the
saturation limits of the active elements, and the con-
trol variable w(t) diverges. This examples already in-
dicates the importance of global properties in practical
applications.
We probed systematically the dependence of control

performance on the chosen initial conditions. We fixed
w0 at zero and varied both x0 and y0 from -1.0 V to
1.0 V in steps of 10 mV. The result is shown in Fig.
4. The black areas denote the basin of attraction for
the stabilized periodic state. It consists of a narrow an-
nulus surrounding the UPO which is indicated by the
white line. For initial conditions outside the basin of
attraction the time series shows a behavior as given in
Fig. 3(b). Small basins of attraction make the UTDFC
method unsuitable for practical applications.

5.2 Phase coupling
In order to extent the basins of attraction a differ-

ent type of coupling was applied. A possible reason

Figure 4. Experimental basins of attraction for linear coupling in
black. Periodic orbit in white.



Figure 5. Phase coupling: Time series of the observed variable
x(t) (line) and the control loop variable w(t) (dashed) for fixed
parameters but different initial conditions. The parameters are ε =
−0.1, k = 0.10 and λc = 0.051. (a) Initial conditions close to
UPO (x0, y0, w0) = (0.6, 0, 0). (b) Initial conditions close to
origin (x0, y0, w0) = (0.1, 0, 0)

for failing control might have been the overshooting
of the feedback signal when the control is switched
on and high-amplitude transients occur. To suppress
such undesired feedback oscillations the control signal
has to be limited to a certain level. Obviously a sig-
moidal control function could do this job much better.
So we replaced the linear control function by a hyper-
bolic tangent, f(x) = tanh(βx) with β � 1, which
was easily implemented in our electronic circuits by
means of a operational amplifier acting as a compara-
tor. Now the coupling function f(x) just probes the
sign of x(t), which means that the coupling in eq.(3)
appears through the phase of of the variable only, with-
out any dependence on the amplitude.
We carry out the same experiment as in the case of lin-

ear coupling. The parameters were fixed to ε = −0.1,
k = 0.10, and λc = 0.051. In Fig. 5 we have shown
the time series for x(t) and w(t) for the same initial
conditions as in Fig. 3, i.e. (a) close to the orbit
(x0, y0, w0) = (0.6, 0, 0) and (b) far from the UPO
(x0, y0, w0) = (0.1, 0, 0). The obvious difference to
Fig. 3 is that for both conditions the UPO is stabi-
lized and the controller variable vanishes. Comparing
the time series of Fig. 5 it is evident that the transient
time is much longer for initial condition far away from
the UPO (b) than for initial conditions close to the UPO
(a).
We found that phase coupling results in a dramatic in-

crease of the basin of attraction , c.f. Fig. 6. Now, even
close to the limiting bifurcation the basin of attraction
includes the whole area inside the UPO (except for the
very centre).

6 Conclusions
We have shown for the first time by experimental

means that the concept of an unstable time-delayed
feedback controller is able to overcome the odd number
limitation. When applying a linear coupling f(x) = x
successful control was obtained only for a small range

Figure 6. Experimental basins of attraction for phase coupling in
black. Periodic orbit in white.

of initial conditions close to the target orbit. This ex-
perimental results are in good agreement with numeri-
cal results.
For many technical application it is difficult or even

impossible to set initial conditions precisely. So the
size of the basin of attraction of the target orbit is
of similar importance as stability considerations. The
phase coupling, which can technically be implemented
in a rather simple way, is able to change the size of the
basin of attraction dramatically. Apart from the origin
the basin of attraction now covers the full area inside
the orbit. With this type of coupling the unstable time-
delayed feedback controller becomes suitable for vari-
ous practical applications.
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