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Abstract
We propose a way for partial compensation of mal-

adaption of decoder to non-ideal quantum communica-
tion channel by means of optimal choice of unravel-
ling of the decoding operation. No physical modifica-
tion of the decoder itself is required. We show that it is
sufficient to add an interface that modifies the decoder-
environment interaction. Tuning of this interface can be
done by methods of (quantum-inspired) machine learn-
ing. We suggest a search algorithm for an optimal unrav-
elling, as an alternative for the classical gradient descent
method.
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1 Introduction
One of the greatest challenges in communication the-

ory is the decoding of the distorted transmitted message.
It is reduced to the most accurate recognition of the sig-
nal corresponding to each symbol of the alphabet used.
For quantum communications, the task is to discrimi-
nate between non-orthogonal and generally mixed states
from the set {ϱ̂(i)}i∈I , indexed by the items of the al-
phabet I . In the simplest case of binary alphabet the
message is a sequence of symbols ′0 ′ and ′1′. We as-
sume that each symbol is encoded during transmission
by one of pure orthogonal states, |0⟩ and |1⟩. Because of
the non-ideal transmission through the quantum channel
(due to its coupling to the environment), the states are
transformed

|i⟩⟨i| 7→ ϱ̂(i) = Λ[|i⟩⟨i|] i ∈ {0, 1} (1)

where Λ is a completely positive trace-preserving
(CPTP) map [Nielsen and Chuang, 2000] reflecting the
transmission properties of the channel.

The decoding device should be able to distinguish the
states ϱ̂(0) and ϱ̂(1) with minimal error, i.e. to most
faithfully reproduce the optimal measurement that dis-
criminates the states most accurately (but in general
this discrimination is still non-deterministic) [Helstrom,
1979; Fuchs, 1996]. The decoder may be represented by
another CPTP map Edec:

Edec[ϱ̂] = Ê0ϱ̂Ê
†
0 + Ê1ϱ̂Ê

†
1,

Ê†
0Ê0 + Ê†

1Ê1 = 1̂.
(2)

Here indices ‘0’ and ‘1’ correspond to different mea-
surement outcomes. Operators Ê0 and Ê1 are known
as Kraus operators [Kraus, 1983], and the probabilities
of different decoding results are given by Tr(Ê†

i Êiϱ̂).
To minimize the decoding error, the Kraus operators

Ê0 and Ê1 should be close to the projectors of the afore-
mentioned optimal measurement aimed for discrimina-
tion of ϱ̂(0) and ϱ̂(1). The latter appear as a result
of Λ operation; therefore, Ê0 and Ê1 are bound to it.
Consider a situation of the properties of the channel
(and hence the operation Λ) are altered for any reason:
Λ 7→ Λ′. Then the decoding based on Ê0 and Ê1 might
become quite different from the one aimed for discrim-
ination of ϱ̂′(0) = Λ′[|0⟩⟨0|] and ϱ̂′(1) = Λ′[|1⟩⟨1|].
Implementation of the necessary change, Edec 7→ E ′

dec,
might be a challenging task. It is also worth noting that
finding an optimal decoding for arbitrary mixed states is
already a significant challenge and remains an active area
of research [Sych, 2016; Rosati, 2017; Weir, 2017; Di-
Mario, 2018]. Therefore a strategy that does not involve
rebuilding of the decoder is desired.

Another situation that also arises in quantum commu-
nication scenarios is fundamentally incomplete knowl-
edge of the transmission channel from the very begin-
ning (e.g. due to noise). In this case, discrimination
should be performed between the elements of an un-
known set. For some classes of channels it is possible
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to use the same measurement that discriminates between
initial input states [Kechrimparis, 2019]; it is also pos-
sible to specifically choose the input states encoding to
a set that is invariant under action of a specific channel
or a class of channels (so-called decoherence-free sub-
space [Lidar, 1997; Ticozzi, 2007]). However, gener-
ally a quantum process tomography is required [Chuang,
1997; Poyatos, 1997].

Figure 1. The scheme of message transmission and decoding.

2 Formulation of the problem
In the present work we propose a strategy based on

fixed structure of decoding, hence no change of Edec
(i.e. Edec = E ′

dec). Instead, the interpretation of in-
formation coming from the decoder to the environment
may be changed. It requires a sort of ‘interface’ between
the decoder and the the set of detectors in which the re-
sults of decoding are registered as physical events. Tun-
ing the interface is much simpler than rebuilding the de-
coder. This tuning allows for optimal unravelling [Bres-
lin, 1997; Il’ichov, 2013] of the decoding operation, i.e.
the choice of a pair {Ê′

0, Ê
′
1} that yields the same Edec,

Edec[ϱ̂] = Ê′
0ϱ̂Ê

′†
0 + Ê′

1ϱ̂Ê
′†
1 , (3)

and in the same time gives the minimal decoding error,
among all other unravellings1. Clearly, all possible un-
ravellings of Edec are given by linear transforms of the
initial pair:

Ê′
i = Êi(U)

.
=

∑
j=0,1

UijÊj , (4)

where Uij are the elements of 2× 2 unitary matrix. It is
sufficient to consider only unit-determinant matrices.

Figure 2. The scheme of the decoding with tunable unravelling, after
the transmission properties of the channel are changed.

1Non-trivial applications of unravelling have been suggested in
quantum states engineering [Il’ichov, 2003] and quantum feedback
systems [Tomilin, 2022].

How to implement the arbitrary choice of unravelling
is a separate problem. As a possible variant, the decoder
signals the result by emitting a photon into one of two
detectors (Fig. 1). The tunable beam-splitter placed be-
tween the decoder and the detectors implements an un-
ravelling (Fig. 2). It is of utmost importance that the
emitted photon is the only channel of transmitting the
decoding results to the environment. The beam-splitter
organizes controllable interference of two photon paths.

In essence, the decoder+interface system is a binary
classifier that sorts the input signals into two categories.
The search for optimal unravelling, i.e. the matrix
U

(opt)
ij , can be done in the form of machine learning2,

similar to training a classical perceptron [Haykin, 1999].
The training data set is

D = {in, ϱ̂n}Nn=1, (5)

where in ∈ {0, 1} is the content of the signal, and ϱ̂n =
ϱ̂(in) is a quantum state representing it3.

The cost functional quantifying the training quality
should include D and the unravelling matrix U . We
choose Kullback-Leibler divergence (KL-divergence) as
a measure of difference between the desired operation
of the decoder and the real one. Other choices of di-
vergence are possible, but KL-divergence is possibly the
simplest one and, as will be shown later, greatly reduces
the calculations needed. The following expression

SKL(p||q) =
1

N

N∑
n=1

∑
j=0,1

p(j|ϱ̂n) ln
p(j|ϱ̂n)

q(j|ϱ̂n, U)
(6)

is an equal-weight sum of KL-divergences calculated for
different elements of D. It contains two types of condi-
tional distributions – p(j|ϱ̂) and q(j|ϱ̂, U). The first one,
p(j|ϱ̂), is taken to be a reference and will be discussed
later in the text, and the latter one, q(j|ϱ̂, U), is the prob-
ability of registering j outcome given the ϱ̂ input state:

q(j|ϱ̂, U) = Tr(Ê†
j (U)Êj(U)ϱ̂). (7)

Kullback-Leibler divergence is non-negative and be-
comes zero for equal p and q [Gardiner, 1985].

Minimizing SKL(p||q) by a proper choice of unravel-
ling U , it is possible to make q(j|ϱ̂, U) close to a refer-
ence distribution p(j|ϱ̂). A natural choice for the latter is

2In the course of learning, parameters of the unravelling as a quan-
tum information processing are established. But, in fact, this pro-
cessing is implemented by means of a classical linear optical system.
Hence, it belongs to the so-called ‘quantum-inspired machine learning’
[Huynh, 2023].

3The set D contains the states ϱ̂′n = Λ′[|in⟩⟨in|] formed by the
transmission channel after alteration. In (5) and further the asterisk is
dropped.
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such that p(j|ϱ̂(i)) reaches maximum for i = j. The de-
coding probabilities for optimal measurement (inacces-
sible by assumption) distinguishing ϱ̂(0) and ϱ̂(1) can
serve as an example. It can certainly be chosen as a refer-
ence in (6), but for simplicity reasons an ideal decoding
will be used:

p(j|ϱ̂(i)) = δij , (8)

similar to the one widely used in classical machine learn-
ing [Bishop, 2006]. For simplicity, we will only leave the
part of (6) that depends on U , and introduce the func-
tional

F (D, U)
.
=

1

N

N∑
n=1

∑
j=0,1

p(j|ϱ̂(in)) ln q(j|ϱ̂(in), U).

(9)
The choice of (9) corresponds to the maximum of F for
close p and q. With (8), one gets

F (D, U) = π0 ln q(0|ϱ̂(0), U) + π1 ln q(1|ϱ̂(1), U),
(10)

where π0 and π1 are fractions of zeroes and ones in the
training set D. It is reasonable to choose these fractions
equal to the relative frequencies of symbols ′0 ′ and ′1′

occurring in a typical text transmitted through the chan-
nel.

As mentioned earlier, the training of interface aims for
finding the matrix

U (opt) = argmax
U

F (D, U), (11)

that defines the optimal decoding unravelling. These ma-
trices belonging to SU(2) group have one-to-one corre-
spondence to points of 3D sphere of a unit radius in a 4D
Euclidian space. Coordinates on a sphere are the needed
parameters. The functional −F (D, U) can be used in a
traditional gradient descent scheme, moving on a sphere
in search of U (opt). In what follows we consider an alter-
native approach, with U being treated as an integral ma-
trix object. It allows to reformulate the search for U (opt)

in terms of solution of an implicit equation.

3 The variational problem
Conditional probabilities (10) can be represented as

follows:

q(i|ϱ̂(i), U) =
∑
j=0,1

∑
k=0,1

U∗
ijUikMkj(i), (12)

with

Mkj(i)
.
= Tr

(
Ê†

j Êkϱ̂(i)

)
. (13)

Since U is unitary, matrices M(0) and M(1) are Hermi-
tian; in case of Ê0 and Ê1 being projectors on eigenstates
of the optimal measurement (for a previously existing

parameters of the channel), matrices M(0) and M(1)
are diagonal.

The search for extremum of F (D, U) constrained by
unitarity of U requires considering the following func-
tional∑

i=0,1

∑
j=0,1

∑
k=0,1

[
πi ln

(
U∗
ijUikMkj(i)

)
−

U∗
jiUkiLjk

]
,

(14)

where (10) is augmented by terms with a matrix of La-
grange multipliers Ljk. Their proper choice will ensure
that the unitarity condition will be always fulfilled dur-
ing solution of variational problem. Note that the matrix
L should be Hermitian for the added terms to be posi-
tive. Assume a small variation of U : Uij 7→ Uij + εij .
The variation (14), up to linear terms in ε and ε∗, takes
the form∑

i=0,1

∑
j=0,1

∑
k=0,1

[
πi

q(i|ϱ̂(i), U)

(
UikMkj(i)ε

∗
ij+

U∗
ijMkj(i)εik

)
−
(
Ukiε

∗
ji + U∗

jiεki

)
Ljk

]
.

(15)

Equaling the terms with ε∗ij to zero, one gets

νi(UM(i))ij = (LU)ij . (16)

Here

νi
.
=

πi

q(i|ϱ̂(i), U)
. (17)

In a compact matrix form, the relation (16) is equivalent
to

νi(UM(i)U†)ij = Lij . (18)

Due to L being Hermitian,

ν0(UM(0)U†)01 = ν1(UM(1)U†)01, (19)

and from M(0) and M(1) being Hermitian it follows
that

ν0(UM(0)U†)10 = ν1(UM(1)U†)10. (20)

From (19) and (20) the equality of corresponding matrix
elements of the matrices ν0UM(0)U† and ν1UM(1)U†

follows, i.e. the matrix U(ν0M(0) − ν1M(1))U† ap-
pears to be diagonal. The search for U (opt) is then re-
duced to finding the eigenvectors of M

.
= ν0M(0) −

ν1M(1):

(UM)ij = λiUij . (21)

Since the matrix M depends on U through ν0 and ν1,
expression (21) becomes an implicit equation on U (opt).



CYBERNETICS AND PHYSICS, VOL. 12, NO. 2, 2023 155

4 Discussion
Equation (21) allows for iterative computation of U (n)

n = 0, 1, 2, ... for a given initial unravelling U (0):

(U (n+1)M(U (n)))ij = λ
(n+1)
i U

(n+1)
ij . (22)

If this series converges, then it is possible to state the
advantages of the proposed method over conventional
gradient descent method, for which the step size in the
unravelling parameter space should be declared explic-
itly.

The Kullbakc-Leibler divergence is not symmetric
under permutation of distributions: SKL(p||q) ̸=
SKL(q||p). The choice of the first variant in (6) was dic-
tated by a further usage of model reference distribution
(8). The second variant

SKL(q||p) =
1

N

N∑
n=1

∑
j=0,1

q(j|ϱ̂n, U)×

ln
q(j|ϱ̂n, U)

p(j|ϱ̂n)

(23)

in this case is not an option due to the presence of
zero probabilities in (8) which leads to the divergence
SKL(q||p) 4. If instead of (8) one takes a distribution
originating from optimal discrimination measurement
(for ϱ̂(0) and ϱ̂(1)), then probabilities p(1|ϱ̂(0)) and
p(0|ϱ̂(1)) are generally non-zero. This enables usage of
the functional (23) for search of optimal unravelling. In
further investigations it would be interesting to compare
unravellings that minimize SKL(q||p) and SKL(p||q).

A certain advantage of choosing SKL(q||p) over
SKL(p||q) appears for close values of q(j|ϱ̂, U) and
p(j|ϱ̂). In this case,

SKL(q||p) + 1 ≃ 1

N

N∑
n=1

∑
j=0,1

q2(j|ϱ̂n, U)

p(j|ϱ̂n)
, (24)

and the solution of variational problem for minimization
of the right-hand side of (24) becomes even easier than
described above.

The training set (5), with ϱ̂n = Λ[|in⟩⟨in|], is the sim-
plest one and allows for analytical study. Note that in
general the properties of the channel may be changed
during the engineering of D:

ϱ̂n = Λn[|in⟩⟨in|]. (25)

Formulation of the optimal unravelling as a solution of
machine learning problem with functionals (6) and (23)
remains valid even in this general case.

The scheme investigated in the present work is not in-
ternally constrained by the form of the maps Λ and Λ′;
the only concern is the convergence of the series (22).

4Note that the nature of q(j|ϱ̂, U) distribution generally prohibits
zero probabilities and divergence of SKL(p||q).

It has a certain advantage over other proposals that use
machine learning methods for discrimination of quantum
states from the specific parametric sets [Patterson, 2021;
Chen, 2021]. Also, current scheme is more transparent
than the schemes based on neural networks [Magesan,
2015; Quiroga, 2021]. In case of quantum communica-
tion with polarization-encoded pulses, different unrav-
ellings of the decoder can be implemented by means
of linear-optical elements, allowing for relatively sim-
ple experimental realization. The only necessary con-
dition is the possibility to insert the interface that pro-
cesses the quantum information transmitted through the
channel before it is registered as classical measurement
outcome. It is precisely this stage – after transmission,
but before detection – where the apparatus implementing
the unravelling operates.

The subject of the present work was limited to a clas-
sical decoding strategy, with a binary outcome. The goal
is to minimize the error probability in every single mea-
surement act. However, there exist strategies that al-
low for perfect state discrimination, at the cost of be-
ing able to do so only in a fraction of measurement se-
ries (so-called unambiguous state-discrimination [Peres,
1988; Ivanovic, 1987; Dieks, 1988; Zhang, 2009]). This
can be done by allowing for additional decoding result
– the inconclusive one. Optimization strategy in this
case would aim at minimizing the number of such re-
sults. The scheme proposed in the present work can in-
deed be adapted to this paradigm, and investigation of its
capabilities in such a setting is certainly of interest.

5 Conclusion
In conclusion, we proposed a strategy for minimizing

the decoding error if the decoder is maladapted to the
transmission channel. If the interaction of the decoder
with the environment is interfaced by a device that
implements a specific unravelling, than the decoding
performance can be improved. This unravelling can
be found during machine learning procedure, and the
implicit equation on it was derived.

This work was supported by the State order (project
AAAA-A21-121021800168-4) at the Institute of Au-
tomation and Electrometry SB RAS.
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