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Abstract
Actuator components of gantry robots, such as reduc-

tion gears or clutches, typically have nonlinear charac-
teristics such as dead zone, hysteresis, or backlash. It-
erative learning control (ILC) is widely used to achieve
the high accuracy of repetitive operations performed by
such robots. These nonlinearities can severely limit the
achievable accuracy. However, their impact on ILC is
not well understood. This paper considers a discrete-
time system under a control delay along the sample tra-
jectory and with input backlash. The method of vector
Lyapunov functions for repetitive processes is applied to
design an ILC law that ensures the convergence of the
learning error. An example is given to demonstrate the
effectiveness of the proposed ILC algorithm.
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1 Introduction
The idea of machine learning appeared long ago. For

more detail, the reader is recommended an interesting
historical survey [Fradkov and Shepeljavyi, 2022] with
special emphasis on the contribution of V.A. Yakubovich
and his scientific school to machine learning, pattern
recognition, adaptive systems, and robotics.

Back in the 1960s, Ya.Z. Tsypkin [Tsypkin, 1971] de-
fined the concept of learning in control systems as fol-
lows:

“By learning we mean the process of developing in a
certain system one or another response to external sig-

nals through multiple impacts on the system and external
adjustments.”

The principle of iterative learning control (ILC) arose
from attempts to improve the accuracy of repetitive tasks
performed by robots and fully matches this concept. The
key feature of ILC is that the dynamics repeat over a fi-
nite duration, resetting to the starting location once each
repetition is complete. In the literature, each repetition is
termed a trial (pass or iteration), and the finite duration
is known as the trial length. Moreover, in a substantial
body of the current literature, the trial length does not
change between trials.

Once a trial is complete, all information generated dur-
ing its execution is available to design the control input
for the next trial. The design problem is to use this previ-
ous trial information in the best way. The most common
approach is to compute the next trial input as that used
on the previous trial plus a correction term based on the
previous trial information.

Early results on ILC research following the pioneer-
ing publications can be found, e.g., in the survey pa-
pers [Bristow et al., 2006; Ahn et al., 2007]. More-
over, ILC remains an established area of research in new
theoretical results, design methods, experimental vali-
dation, and implementation. Recent developments in-
clude applications to additive manufacturing [Lim et al.,
2017], high-precision multilayer laser deposition sys-
tems [Sammons et al., 2019], center-articulated indus-
trial vehicles [Dekker et al., 2019], and marine sys-
tems [Sornmo et al., 2016]. Also, there has been very
productive use in health care applications, e.g., robotic-
assisted stroke rehabilitation [Sakariya et al., 2020; Seel
et al., 2016; Freeman et al., 2012; Meadmore et al.,
2014] with supporting clinical trials, and heart ventric-
ular support devices [Ketelhut et al., 2019].
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The fundamental idea of the research approach in this
paper is based on the physical analogy with vector fields.
Models of iterative learning control processes belong to
the class of repetitive processes, a special case of the
so-called 2D systems. These systems have an essen-
tial peculiarity as follows. The classical method of Lya-
punov functions cannot be applied to analyze their sta-
bility (hence, to determine convergence conditions for
ILC algorithms) since unlike ordinary differential or dif-
ference equations, it is impossible to find the gradient or
first difference of the Lyapunov function from the orig-
inal equations of the system without finding their solu-
tions.

The divergence operator is widely used to study vector
fields. This operator maps a vector field onto a scalar one
and determines, for each point, how much the incoming
and outgoing fields diverge from a small neighborhood
of a given point. In other words, it shows how much the
incoming and outgoing flows differ from one another.
In 2D models, it is easy to find the generalized energy
along the repetition trajectory and the generalized energy
between repetitions. Treating these quantities as compo-
nents of a 2D vector field, based on the known proper-
ties of divergence, it can be argued that, first, if such a
field has a negative divergence at some point, this point
will be an energy sink; if the divergence at some point
is positive, this point will be an energy source; finally,
when the divergence is zero, the field either contains no
sources and sinks or they balance each other. According
to the aforesaid, it is natural to assume that if the diver-
gence of such a field takes negative values everywhere,
this field will correspond to a stable system

Rigorous mathematical derivations confirm this as-
sumption and provide a constructive method for analyz-
ing the stability of repetitive processes [Pakshin et al.,
2016]. This method is used below to obtain convergence
conditions for ILC algorithms.

As has been mentioned, the principle of iterative learn-
ing control historically emerged from the problems of in-
creasing the accuracy of repetitive operations performed
by robots and is currently quite widespread in industrial
gantry robots. Such robots are part of modern smart
manufacturing (SM) systems, which are complex cyber-
physical systems (CPS) that differ significantly from a
simple combination of autonomous robots performing
individual operations. CPS are defined by the inte-
gration of cybernetic and physical components such as
communication and control networks, sensors, and ac-
tuators in a multilayer architecture [Saez et al., 2020;
Uzhva and Granichin, 2021]. Flexibility and reconfig-
urability are key elements of SM that ensure on-the-fly
changes to the production process. These concepts give
the advantage to improve efficiency and reduce produc-
tion costs [Qamsane et al., 2019].

The long-term non-stop operation of SM systems
raises increased demands for the robots included in
them. Actuator components of gantry robots (e.g., re-
duction gears or clutches) typically have nonlinear char-

acteristics such as dead zone, hysteresis, or backlash.
These nonlinearities can severely limit the achievable ac-
curacy [Pakshin et al., 2020; Pakshin and Emelyanova,
2023]. Therefore, it is crucial to analyze and design ILC
algorithms considering these nonlinearities. The delay is
another factor that may have an adverse effect here.

A substantial part of the ILC literature, including ex-
perimental validation, involves a linear dynamic model
for design. By analogy with other approaches, such a
design may encounter implementation difficulties due to
nonlinear effects in actuators. This form of nonlinear-
ity is more complicated for analysis. It is often repre-
sented as the sum of a linear term and an unknown but
bounded term. A typical example is the saturation of ac-
tuators. Modifications to control laws to compensate the
impact of saturation have seen progress reported, e.g.,
in [Sebastian et al., 2019; Pakshin et al., 2020]. Back-
lash is another common problem for actuators, but this
case has attracted relatively less attention of researchers
in the ILC setting; see[Wei et al., 2017a; He et al., 2019;
Zhou et al., 2020] for the currently available results.

Previous research on ILC with backlash includes [He
et al., 2019], where the Timoshenko beam system de-
scribed by a second-order distributed parameter model
was considered. In this model, the input backlash is di-
vided into a linear input and an unknown bounded term,
estimated by an observer. Also, in [Zhou et al., 2020], a
model of a two-link rigid-flexible manipulator with input
backlash was considered. The input backlash was ana-
lyzed in an identical manner and was combined with an
external disturbance. Both of these designs apply only
to the specific systems described. In [Wei et al., 2017b],
an adaptive ILC scheme was presented for a particular
class of nonlinear systems with unknown time-varying
delays and control preceded by an unknown nonlinear
backlash-like hysteresis.

In contrast to the publications mentioned above, this
paper proposes an ILC design approach for discrete-time
systems with input backlash and a delay along the sam-
ple trajectory. The approach is based on the development
of the earlier results [Pakshin and Emelyanova, 2023],
where systems with input saturation were studied, to the
class of systems under consideration.

2 Problem Statement
Consider a discrete-time stochastic system in repetitive

mode described by the state-space model

xk(p+ 1) = Axk(p) +Bψ(uk(p− d)),

yk(p) = Cxk(p), 0 ≤ p ≤ N − 1, k ≥ 0, (1)

where xk(p) ∈ Rnx is the state vector, uk(p) ∈ R
is the scalar control variable, yk(p) ∈ R is the con-
trollable scalar output variable (often called the trial or
pass profile), d is the number of control delay samples,
and ψ(uk(p)) (further written as ψk(p) for brevity) is
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Figure 1. Backlash model.

the backlash-type nonlinear function (Fig. 1). Follow-
ing [Tao and Kokotović, 1993], in the case under consid-
eration, this nonlinear function is given by

ψ(uk(p)) = back(uk(p))

=

ml(uk(p)− cl), if uk(p) ≤ uk(p),
mr(uk(p)− cr), if uk(p) ≥ uk(p),
ψk(p− 1), if uk(p) < uk(p) < uk(p),

(2)

whereml, mr, cr are positive constants, cl is a negative
constant, and

uk(p) =
1

ml
back(uk(p− 1)) + cl,

uk(p) =
1

mr
back(uk(p− 1)) + cr.

Attention is focused on the case mr = ml = m,
which arises in applications. Without loss of generality,
the boundary conditions have the form xk(0) = 0 and
y0(p) = f(p), where f(p) is a known scalar function of
p, 0 ≤ p ≤ N − 1. Also, the pair {A,B} is assumed to
be controllable and CB ̸= 0.

The initial condition xk(0) is the same for all k =
0, 1 . . . , whereas uk(p) is known and bounded for
p ∈ [−d, 0].

Let yref(p) ∈ R, 0 ≤ p ≤ N − 1, denote the supplied
reference signal. Then

ek(p) = yref(p)− yk(p) (3)

is the error on trial k.
The control design problem is to construct a control

input sequence {uk}, such that

|ek(p)| ≤ κϱk + µ, κ > 0, µ ≥ 0, 0 < ϱ < 1, (4)
lim
k→∞

|uk(p)| = |u∞(p)| <∞, p ∈ [0, N − 1], (5)

where the bounded variable u∞(p) is termed the learned
control and | · | indicates the chosen norm (the absolute
value for scalar functions). If there is no backlash, the
design presented in this paper reduces to the linear dy-
namics case and limk→∞ |ek(p)| = 0 naturally holds.

3 An Auxiliary Model in the Repetitive Process
Form

Consider an auxiliary vector x̂k of dimension d with
the components x̌ki(p) = ψk(p− i), i = 1, . . . , d. It is
easy to see that this vector satisfies the equation

x̌k(p+ 1) = Adx̌k(p) +Bdψk(p), (6)

where

Ad =


0 0 . . . 0 0
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 , Bd = [I 0 0 . . . 0]T .

Therefore, the first equation in (1) can be written as

xk(p+ 1) = Axk(p) +BCdx̌k(p), (7)

where Cd = [0 . . . 0︸ ︷︷ ︸
d−1

I].

With x̄k+1(p) = [xTk+1(p) x̌
T
k+1(p)]

T , equations (6),
(7) can be reduced to the single equation

x̄k(p+ 1) = Ǎx̄k(p) + B̌ψk(p),

yk(p) = Čx̄k(p), (8)

where

Ǎ =

[
A BCd

0 Ad

]
, B̌ =

[
0

Bd

]
, Č = [C 0].

Assume that the state vector is available for control de-
sign and the matrix CB is nonsingular. In the case of
no delay, the nonsingularity condition allows deriving a
simple equation for the learning error as a function of
the number of passes. For the extended model, ČB̌ = 0,
and additional transformations are needed. First, it is
necessary to introduce the auxiliary variable

ηk+1(p+ 1) = x̄k+1(p)− x̄k(p) (9)

and obtain equations for the increments of the extended
state vector. According to (8), this variable satisfies the
equation

ηk+1(p+ 1) = Ǎηk+1(p) + B̌∆ψk+1(p− 1), (10)

where ∆ψk+1(p− 1) = ψk+1(p− 1)− ψk(p− 1).
Due to the structure of the matrices Ǎ and B̌,

ČǍdB̌ = CB. (11)
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Consider the biased learning error ēk(p) = ek(p+ d).
In view of (3) and (8)–(10), it obeys the equation

ēk+1(p) = −ČǍd+1ηk+1(p)

+ ēk(p)− CB∆ψk+1(p− 1). (12)

In a commonly used ILC law, the input for the next trial
as the sum of the previous trial input plus a correction
term that uses previous trial data. This approach is con-
sidered below: the control law has the structure

ψk+1(p) = back(ψk(p) + δuk+1(p)), (13)

where δuk+1(p) is the control update given by

δuk+1(p) = K1Hηk+1(p+ 1) +K2ēk(p+ 1), (14)

where K1 and K2 are matrices of compatible dimen-
sions to be designed and H = [ I︸︷︷︸

nx

0]. With φk(p) =

∆ψk+1(p − 1) − δuk+1(p − 1), the system model in
increments can be written as

ηk+1(p+ 1) = (Ǎ+ B̌K1H)ηk+1(p)

+ B̌K2ēk(p) + B̌φk(p), (15)

ēk+1(p) = −ČǍd(Ǎ+ B̌K1H)ηk+1(p)

+ (I − CBK2)ēk(p)− CBφk(p).

It follows from (2) and Fig. 1 that ∆ψk+1(p − 1) =
back(uk+1(p− 1))− back(uk(p− 1)) satisfies the con-
straints

mδuk+1(p− 1)−m∆c ≤ ∆ψk+1(p− 1)

≤ mδuk+1(p− 1) +m∆c,

where ∆c = cr−cl.Also, φk(p) satisfies the constraints

m1δuk+1(p− 1)−m∆c ≤ φk(p)

≤ m1δuk+1(p− 1) +m∆c,

or

m2(∆c)2 − [φk(p)−m1δuk+1(p− 1)]2 ≥ 0, (16)

wherem1 = m−1. Ifmr = ml = m, then back(mu) =
mback(u); without loss of generality, the case m = 1
will be considered below. In this case, the quadratic con-
straint (16) takes the form

∆c2 − φk(p)
2 ≥ 0. (17)

The model (15) represents a discrete repetitive process,
a particular class of 2D systems [Rogers et al., 2007].
In the presence of backlash, the ILC dynamics are non-
linear, and a stability theory has been recently devel-
oped for nonlinear repetitive processes. One approach
is based on vector Lyapunov functions [Pakshin et al.,
2016]. This theory is used for ILC design below, starting
from the convergence conditions presented in the next
section.

4 The Convergence Theorem
Consider the vector Lyapunov function

V (ηk+1(p), ēk(p)) =

[
V1(ηk+1(p))
V2(ēk(p))

]
(18)

on the trajectories of system (15), where
V1(ηk+1(p)) > 0, η ̸= 0, V2(ēk(p)) > 0, ēk(p) ̸= 0,
V1(0) = 0, and V2(0) = 0. The discrete counterpart of
the divergence operator along the trajectories of this
system is defined as

DV (ηk+1(p), ēk(p)) = V1(ηk+1(p+ 1))

− V1(ηk+1(p)) + V2(ēk+1(p))− V2(ēk(p)). (19)

Theorem 1. If there exist a vector Lyapunov func-
tion (18), positive numbers c1, c2, and c3, and a non-
negative number γ such that

c1|ηk+1(p)|2 ⩽ V1(ηk+1(p)) ⩽ c2|ηk+1(p)|2, (20)

c1|ēk(p)|2 ⩽ V2(ēk(p)) ⩽ c2|ēk(p)|2, (21)
DdV (ηk+1(p), ēk(p)) ⩽ γ

− c3(|ηk+1(p)|2 + |ēk(p)|2), (22)

then the convergence conditions (4), (5) hold.

Proof. In the case γ = 0, the proof coincides with that
of Theorem 1 in [Pakshin et al., 2016]. Let γ ̸= 0; cal-
culating the divergence along the trajectories of (15) and
following to the outline of the proof from [Pakshin et al.,
2016] give

|ēk(p)|2 ⩽
1

c1

[
λk

p∑
q=0

λp−qV2(ē0(q))

+ γ

k−1∑
n=0

(
p∑

q=0

λp−q

)
λk−1−n

]
, (23)

where 0 < λ < 1. Since the value ||ē0(q)||2 is bounded
for all 0 ⩽ q ⩽ N − 1, there exists µ̄ > 0 such that
||ē0(q)||2 ⩽ µ̄. In view of (21), it follows that

p∑
q=0

λp−qV2(ē0(q)) ≤ c2µ̄

∞∑
q=0

λp−q =
c2µ̄

1− λ
. (24)

Considering (24), inequality (23) implies

|ēk(p)|2 ⩽ αλk + β, (25)
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where

α =
c2µ̄

c1(1− λ)
, β =

γ

c1(1− λ)2
, 1 ⩽ p ⩽ N.

By definition, ēk(p) is the biased learning error. Hence,
condition (25) leads to (4) with the parameters κ =

√
α,

ϱ =
√
λ, and µ =

√
β.

It suffices to show the boundedness conditions (5) for
this ILC law. First, note that by the convergence con-
dition (4) and (3), |Cx∞(p)| = limk→∞ |Cxk(p)| is
bounded for all p. It follows from (1) that

Cxk(p+ d+ 1) = CAxk(p+ d) + CBψk(p)

and

ψk(p) = (CB)−1(Cxk(p+ d+ 1)

− CApxk(p+ d)). (26)

Hence,

|ψ∞(0)| ≤ |(CB)−1|(|Cx∞(d+ 1)|
+ |CAx∞(d)|) <∞

because |Cx∞(p)| <∞ for all p, and

|ψ∞(1)| ≤ |(CB)−1|(|Cx∞(d+ 2)|+ |CA2x∞(d)|
+ |CAB||ψ∞(0)|) <∞

because |Cx∞(p)| < ∞ for all p, and according to the
previous inequality, |Ψ∞(0)| <∞.

Continuing this procedure gives

|Ψ∞(p− 1)| ≤ |(CB)−1|(|Cx∞(p+ d)|

+ |
p−2∑
q=0

|CAp−1−qB||Ψ∞(q)|

+ |CApB||x∞(d)|) <∞, p ∈ [1, N ],

because |Cx∞(p)| < ∞ for all p, and according to the
previous steps, |Ψ∞(q)| <∞, q = 0, 1, . . . , p− 2.

Finally, by the definition of the inverse backlash func-
tion [Tao and Kokotović, 1993], the boundedness condi-
tion (5) is valid.

5 Iterative Learning Control Design
Theorem 1 yields various sufficient convergence con-

ditions depending on the particular choice of the entries
in the vector Lyapunov function (18). Choosing these
entries as quadratic forms allows reducing the original
design problem to linear matrix inequalities (LMIs). If
these LMIs are solvable, then the update law is easily
obtained from them. However, it is a non-trivial task to
determine the level of conservativeness of this solution
in advance, and the solvability domain may be overly
bounded. This difficulty can be overcome, e.g., as fol-
lows. Suppose that an update law obtained by using ap-
proximation the original nonlinear model with a linear

model ensures convergence. Then if the original nonlin-
ear system with this update law satisfies the conditions of
Theorem 1, then this law will ensure the convergence of
the learning error in the original system. The approaches
based on these ideas are described in detail below.

5.1 The direct method
Consider a vector Lyapunov function (18) along the

trajectories of (15) with entries as the quadratic forms

V1(ηk+1(p)) = η⊤k+1(p)P1ηk+1(p),

V2(ēk(p)) = ē⊤k (p)P2ēk(p),

where P1 ≻ 0 and P2 ≻ 0, P = diag[P1 P2]. Let
ξk(p) = [ηk+1(p)

⊤ ēk(p)]
⊤, simply written below as

ξ, η, ē for brevity. Computing (19) along the trajecto-
ries of (15) gives

DV (η, ē) = [(Ā+ B̄KH̄)ξ + B̄φ]⊤P [(Ā

+ B̄iKH̄)ξ + B̄φ]− ξ⊤Pξ, (27)

where

K = [K1 K2], H̄ =

[
H 0
0 1

]
,

Ā =

[
Ǎ 0

−ČǍd+1 I

]
, B̄ =

[
B̌

−CB

]
.

Since V1(η) ≻ 0 and V2(ē) ≻ 0, conditions (20)
and (21) of Theorem 1 are valid.

Under the constraints (17), condition (22) will be true
if

DV (η, ē) + τ((∆c)2 − φ2)

≤ γ − ξ⊤[Q+ (KH̄)⊤RKH̄]ξ (28)

holds for all φ and ξ, where Q ≻ 0 and R ≻ 0 are ma-
trices of compatible dimensions and τ > 0. (For details,
see [Tarbouriech et al., 2011; Yakubovich et al., 2004].)
Inequality (28) holds if γ = τ(∆c)2 and

[
(Ā+ B̄KH̄)⊤P (Ā+ B̄KH̄)− P +M

B̄TP (Ā+ B̄KH̄)

(Ā+ B̄KH̄)⊤PB̄
B̄⊤PB̄ − τ

]
⪯ 0,

where M = Q + (KH̄)⊤RKH̄ . Rewriting this last
inequality as[

−P 0
0 −τ

]
+

[
(Ā+ B̄iKH̄)⊤ I (KH̄)⊤

B̄⊤ 0 0

]

×

P 0 0
0 Q 0
0 0 R

 (Ā+ B̄KH̄) B̄
I 0

KH̄ 0

 ⪯ 0
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and applying Schur’s complement lemma gives
−X 0 (Ā+ B̄Y H̄)⊤

0 −τ B̄⊤

(Ā+ B̄Y H̄) B̄ −X
X 0 0
Y H 0 0

X (Y H)⊤

0 0
0 0

−Q−1 0
0 −R−1

 ⪯ 0, (29)

where X = P−1, Y = KW and W is the solution of

HX =WH. (30)

If the system of linear matrix inequalities (LMIs) and
linear matrix equation (LME) (5.1), (30) is solvable with
respect to the variables X, Y, and W , then the ILC
law (13) with δuk+1(p) given by (14) and

K = [K1 K2] = YW−1

will ensure the convergence condition (4). The matrices
Q and R play here the same role as weight matrices in
the LQR theory.

5.2 The method based on an auxiliary Riccati in-
equality

In this method, first, the ILC law will be obtained for
the linear incremental model, and then for this law the
convergence conditions based on the extended model,
which include backlash will be checked.

This approach has the following motivation: as a rule,
it is necessary to correct the weight matrices repeatedly
during control design in order to obtain a satisfactory rate
of convergence of the learning error. For such a correc-
tion in the linear model, a wider freedom of choice is
provided, due to which a decrease in conservatism can
be expected. Consider the discrete Riccati inequality

Ā⊤P̄ Ā− (1− σ)P̄ − Ā⊤P̄ B̄[B̄⊤P̄ B̄

+R]−1B̄⊤P̄ Ā+Q ⪯ 0 (31)

with respect to a positive definite matrix P̄ =
diag[P1 P2],where P1 and P2 have the same dimensions
as in previous subsection and 0 < σ < 1. According to
Schur’s complement lemma, if the LMI (1− σ)X̄ XĀ⊤ X̄

ĀX̄ X̄ + B̄R−1B̄⊤ 0
X̄ 0 Q−1

 ⪰ 0, X ≻ 0,

(32)

are solvable with respect to X = diag[X1 X2] ≻ 0,
where X1 and X2 have the same dimensions as P1 and

P2, then P = X−1. Let

L = [ L1︸︷︷︸
nx

L2︸︷︷︸
d

L3︸︷︷︸
1

]

= −[B̄⊤P̄ B̄i +R]−1B̄⊤P̄ Ā (33)
(34)

F = [ F1︸︷︷︸
nx

0︸︷︷︸
d

F3︸︷︷︸
1

] = LΘ, (35)

where

Θ =

Θ1 0 0
0 0 0
0 0 Θ3


is a matrix with blocks of compatible dimensions that
satisfies the LMI[

M −MΘ−ΘM −Q Θ
√
M√

MΘ −I

]
⪯ 0 (36)

and M = Ā⊤P̄ B̄[B̄⊤P̄ B̄ +R]−1B̄⊤P̄ Ā.

Theorem 2. Assume that for some weight matricesQ ≻
0 and R ≻ 0 and scalar 0 < σ < 1, the linear matrix
inequalities (32), (36) and[

(Ā+ B̄KH̄)⊤S(Ā+ B̄iKH̄)− S
B̄⊤S(Ā+ B̄KH̄)

(Ā+ B̄KH̄)⊤SB̄
B̄⊤SB̄ − τ

]
≺ 0, (37)

where

K = [F1Θ1 F3Θ3], (38)

are solvable with respect to X , Θ, τ > 0, and S =
diag[S1 S2] ≻ 0 with blocks of the same dimensions as
P1 and P2. Then the ILC law (13) with δuk+1(p) given
by (14) and K = [K1 K2] given by (38) ensures the
convergence condition (4) and the boundedness condi-
tion (5).

Now the idea outlined at the beginning of this section
can be refined as follows. Consider system (1) without
backlash. In this case, the ILC law has form

uk+1(p) = uk(p) + δuk+1(p).

Let δuk+1(p) be obtained as described in Theorem 2; by
corollary of Theorem 2 from [Pakshin and Emelianova,
2020], for this linear case, conditions (4), (5) hold with
γ = 0 and, hence, the condition of this Theorem seems
less conservative compared to the conditions of the pre-
vious section.
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Figure 2. The RMS progression for c = 0.003: σ = 0.85
(green line), σ = 0.8 (red line), and σ = 0.4 (blue line).

Figure 3. The RMS progression for c = 0.005 (blue line) and
c = 0.003 (red line).

Proof. Inequality (37) implies that, for all ξ and φ in-
cluding those satisfying (17),

[(Ā+ B̄KH̄)ξ + B̄φ]⊤S[(Ā

+ B̄KH̄)ξ + B̄φ]− ξ⊤Sξ − τφ2 < 0. (39)

Since the left-hand side is a quadratic form in ξ and φ
and S > 0, all the conditions of Theorem 1 are satisfied
and the convergence condition (4) holds for γ = τ(∆c)2.
The boundedness condition (5) is proved similarly to the
previous section.

6 Example
As an example, consider the one-axis model of the

multi-axis gantry robot described in [Hladowski et al.,
2010]. According to the frequency response tests
in [Hladowski et al., 2010], an adequate dynamic model
for control law design has the 3rd order continuous-time

transfer function

G(s) =
15.8869(s+ 850.3)

s(s2 + 707.6s+ 3.377 · 105)
. (40)

The reference trajectory is the same as in [Hladowski
et al., 2010] with a trial length of 2 s. For discrete-time
design, a sampling period of 0.01 s was used in combi-
nation with m = 1 and cr = −cl = c for the backlash
nonlinearity (Fig. 1). The discrete-time control signal
was computed with that sampling period and a delay of
1 step. The signal was converted into a control signal
through zero-order extrapolation. The resulting discrete-
time state-space model has the form (1), where the pa-
rameters were obtained from (40) using standard MAT-
LAB functions. For Q = diag[1 1 5 · 10−4 103 1], R =
4.5 · 105, and σ = 0.8, Theorem 2 gives

K1 = [−2.8 − 3.9 − 1857.6], K2 = 202.4.

The performance of this ILC law was measured by the
root-mean-square error for each trial:

RMS(k) =

√√√√ 1

N

N∑
p=0

||ek(p)||2. (41)

According to the figure, the steady state of the RMS
value is not equal to zero and it depends on the gains
in the update law. For σ = 0.85,

K1 = [−3.7 − 5.2 − 2471.5], K2 = 296.6;

for σ = 0.4,

K1 = [−6.0 − 8.3 − 3971.0], K2 = 130.2.

The rates of RMS convergence and the steady-state val-
ues are different for the three cases above (Fig.2).

With an increase in the dead zone, the steady-state
value of the RMS increases as well (Fig. 3). Figure 4
shows the RMS progression for different delays. The de-
crease in the steady-state value of RMS with an increase
in the delay is explained by higher gains in the update
law. In the case of the two-step delay,

K1 = [−6.6 − 9.1 − 4362.7], K2 = 296.7.

In the absence of backlash, as the number of trials in-
creases, the RMS is reduced to the numerical error level
(Fig. 5).

7 Conclusion
A new iterative learning control design method has

been proposed. Unlike the known ones, it takes into ac-
count the influence of input backlash and delay along
the sample trajectory. An illustrative example has con-
firmed the theoretical conclusion that backlash limits the
achievable tracking accuracy of the reference learning
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Figure 4. The RMS progression for c = 0.003: one-step delay
(blue line) and two-step delay (red line).

Figure 5. The RMS progression in the absence of backlash.

trajectory. The delay does not affect the achievable accu-
racy and do not plays significant role in the convergence
of the ILC law, as so as in the case of linear systems, see
[Tao et al., 2019] and references therein. On the other
hand, for the same rate of convergence in a system with
delay, higher gains are required in the update law. In-
creasing these gains can result in lower accuracy in the
presence of a saturation-type non-linearity at the input.
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