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Abstract
The model of a vacuum diode under the influence of a

strong external magnetic field is considered. The uninsu-
lated variant, when a part of electrons emitted from the
cathode reaches the anode, is investigated. The model
is described by a singular boundary value problem for
a system of ordinary differential equations. The sensi-
tivity of the problem solution to the change of input pa-
rameters is investigated. A coordinate descent method
to restore parameters of the boundary value problem is
implemented numerically.
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1 Introduction
The modern statement of the problem of magnetic iso-

lation was formulated by physicists in the late 80s of the
last century. The magnetic insulation effect is that under
the influence of a strong external magnetic field the elec-
trons emitted from the cathode do not reach the anode
and turn back to the cathode. This effect creates an elec-
tronic layer outside of which the electromagnetic field is
equal to zero. Here two main modes are possible: the
first one is when electrons reach the anode (“uninsulated
diode”), and the second one is when electrons turn back
to the cathode (“insulated diode”). In addition, there is
an intermediate mode where some electrons can reach
the anode while others cannot.

The greatest interest is in modeling the complete prob-
lem, which is a general relativistic Vlasov-Maxwell
equations [Abdallah et al., 1998]. This general model
is still waiting for its researchers.

In [Abdallah et al., 1998; Sinitsyn, 2001; Semenov
et al., 2010] the limit model of magnetic insulation de-
scribed by the boundary value problem for the system of
two nonlinear second order ordinary differential equa-
tions is considered. A specific feature of this system is
its singularity. In [Abdallah et al., 1998; Sinitsyn, 2001;
Semenov et al., 2010; Kosov et al., 2012] a number of
analytical results were obtained and numerical experi-
ments were carried out to solve boundary value problems
with different parameters. Nevertheless, the problem of
magnetic insulation simulation turned out to be rather
complicated.

In this paper, a switched algorithm is used for numer-
ical solution of the singular boundary value problem.
A series of numerical experiments was carried out to
study the sensitivity of the problem. To solve the inverse
problem of parameter recovery, the coordinate descent
method was proposed and implemented. This method
proved to be quite effective for the problem under con-
sideration.

2 Mathematical Model
The magnetic insulation effect is that under the influ-

ence of a strong external magnetic field the electrons
emitted from the cathode do not reach the anode and
turn back to the cathode. This effect creates an elec-
tronic layer outside of which the electromagnetic field is
equal to zero. Here two main modes are possible: the
first one is when electrons reach the anode (“uninsulated
diode”), and the second one is when electrons turn back
to the cathode (“insulated diode”). In addition, there is
an intermediate mode where some electrons can reach
the anode while others cannot. However, the main sys-
tem, called the limit problem, describing the uninsulated
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diode mode is given by the following equations:
d2ϕ
dx2 (x) = jx

1+ϕ(x)√
(1+ϕ(x))2−1−a2(x)

,

d2a
dx2 (x) = jx

a(x)√
(1+ϕ(x))2−1−a2(x)

,
(1)

where x ∈ [0, 1] is a independent variable, which deter-
mines a relative distance from the cathode (x = 0) to
the anode (x = 1); ϕ(x) is the function which describes
the change in the electric field potential when moving
from the cathode to the anode; the function a(x) denotes
the magnetic potential; jx describes the electrical current
density via diode.

The equation (1) describes the electric and magnetic
fields inside the diode, and its solution has to meet the
initial and boundary conditions characterizing the natu-
ral physics of the process describing the mode of unin-
sulated diode. So, on the segment x = [0, 1] we have:

the initial conditions:

ϕ(0) = 0, ϕ̇(0) = 0, a(0) = 0, ȧ(0) = β (2)

the boundary conditions:

ϕ(1) = ϕL, a(1) = aL (3)

β is a parameter in the initial conditions (2) which
characterizes the magnetic field near the cathode.

The study of the system (1) – (3) is connected with
its numerical solutions. The problem simulation has a
basic character, as the analysis of the behavior of inte-
gral curves can and should be correlated with the known
physical effects of the behaviour of vacuum diodes. To
overcome these difficulties, the authors have done their
work to identify the simplest admissible numerical meth-
ods and the development of a special method for finding
the parameters of the model by given boundary condi-
tions.

Changing the variables

y1 = ϕ(x), y2 =
dϕ

dx
, y3 = a(x), y4 =

da

dx
, (4)

we get the following boundary value problem

ẏ1 = y2,

ẏ2 = jx
1+y1√

(1+y1)2−1−y2
3

,

ẏ3 = y4,

ẏ4 = jx
y3√

(1+y1)2−1−y2
3

.

(5)

y1(0) = 0, y2(0) = 0, y3(0) = 0, y4(0) = β, (6)

y1(1) = ϕL, y3(1) = aL, (7)

Let us define the first statement of the inverse boundary
value problem for the limit model (5) – (7), describing
the mode of uninsulated vacuum diode:

Statement 1:
For the given parameters ϕL and aL it is necessary
to restore jx and β.

Note that for the system (5) – (7) we can also define a
number of other inverse problems:

Statement 2:
For the given parameters aL and β it is necessary to
restore jx and ϕL.
Statement 3:
For the given parameters ϕL and β it is necessary to
restore jx and aL.
Statement 4:
For the given parameters aL and jx it is necessary
to restore β and ϕL.
Statement 5:
For the given parameters ϕL and jx it is necessary
to restore β and aL.

In the authors’ opinion, simulation of all statements
of the inverse problems for the system (5) – (7) will
allow to consider all aspects of the uninsulated diode
model, which can be correlated with its physical proper-
ties. Within the framework of the current work, we will
consider only the first statement, as it corresponds to the
principal physical evaluation of diode operation parame-
ters in the steady-state (limit) mode relative to the initial
given potentials of magnetic and electric fields.

3 The Sensitivity of the Numerical solution of a
Quasi-singular Problem

Note that at least some complete simulation of the limit
case as a system of ordinary differential equations (5) –
(7) is not available at this moment, except for the initial
work of the authors [Varin, 2013]. The situation has de-
veloped, in particular, because this problem is described
by an autonomous system of ODE of the second order,
which has a discontinuity in the starting point.

For given jx and β the simulation problem is deter-
mined by the initial problem, which requires two sub-
problems to be solved:

1. to choose of the numerical integration method;
2. to determine the solvability of the solution with re-

spect to the singularity of initial conditions.

As an integration algorithm it is proposed to use the
LSODA switched algorithm developed by Petzold [Pet-
zold, 1980] and included in scipy.integrate package.
This algorithm automatically chooses between the soft
method of predictor-corrector Adams method and the
rigid Gear method [Gear, 1971; Shampine, 1979] with
the inverse differential formula (Backward Differentia-
tion Formula (BDF) method) directly during the solu-
tion.
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Figure 2. Dependence of the parameter of numerical calculation
y4(1) = aL at decreasing of initial parameters y1(0) and y3(0)

Figure 3. Dependence of the parameter of numerical calculation
y3(1) = ϕL when the integration step is reduced

Figure 1. Dependence of the parameter of numerical calculation
y3(1) = ϕL at decreasing of initial parameters y1(0) and y3(0)

At the initial stage of the solution, which is not usually
rigid, LSODA uses more efficient Adams methods. If
the presence of stiffness is detected, then the automatic
transition to the method of Gear solution for stiff systems
is carried out. Given the stiffness of the (5) model, this
property of the algorithm is mandatory. It also be noted
that in the calculations by the Adams method, the error
made at any step does not tend to exponential growth.

To overcome the problem of singularity at the numeri-
cal solution of the boundary value problem it is proposed

to choose the values y1(0) and y3(0) as non-zero, but
rather small, having connected the parameter of small-
ness with the value of the integration step. A detailed
study of the system equations (5) shows that supposing
ϕ(2)(0) ≡ a(2)(0) = const (the value of the constant is
arbitrary) preserves the integrity of the system. It follows
from this that all explicit numerical methods of ODE so-
lution are not applicable at the starting point. To solve
the problem within the framework of the numerical solu-
tion it is proposed to take these parameters small enough
and pass to the quasi-singular problem concerning pa-
rameters y1(0) = ε(0)1 and y3(0) = ε(0)2, in which
parameters ε(0)1 and ε(0)2 are set with a sufficient or-
der of smallness (relative to the integration step) about
0.

For numerical analysis of sensitivity of the method of
integration of the quasi-singular initial problem concern-
ing initial conditions y1(0) = ε(0)1 and y3(0) = ε(0)2

we will consider the problem at the following parame-
ters:

jx = 0.5, y4(0) = β = 1.0. (8)

Figs. 1 and 2 show the results of the numerical anal-
ysis of the initial problem solution sensitivity for (5) –
(7) at the decrease of the initial parameters y1(0) and
y3(0) at the system integration (5) – (7) with the inter-
val division into 50,000 points. The results of modeling
showed the sensitivity of the numerical solution of the
quasi-singular initial problem from the initial condition
of y1(0) (within the 4th order) and weak sensitivity from
parameter y3(0). Thus for both dependences presented
on figures have the tendency to convergence at approach-
ing to zero of initial condition y1(0).

Tables 1 and 2, Figs. 3 and 4 show the results of the
numerical experiment on the sensitivity of the solution
of the initial problem for (5) – (7) with the reduction
of the initial parameters y1(0) and y3(0), as well as the
reduction of the integration step.

As can be seen from the analysis of the data presented
in Tables 1 and 2, Figs. 3 and 4, the results of our nu-
merical solution for the selected integration method are
insensitive to the value of the numerical integration step,
which indicates the stability of the method in relation to
the choice of the size of the integration grid. In general,
we can conclude that the chosen method of integration
from the position of the solution of the quasi-singular
problem allows taking into account the convergence of
the solution when approaching zero initial parameters
y1(0) and y3(0) and the invalidity of the method to the
integration step.

4 Admissible Domain of Boundary Conditions ϕL

and aL
To study the domain of admissible solutions of bound-

ary conditions ϕL(aL), a multiple numerical solution
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Table 2. Dependence of the parameter of numerical calculation
y4(1) = aL on the number of points of division of the integration
interval

nt y1(0) = 1e− 5 y1(0) = 1e− 6

10000 1.3284482936 1.3262584759

30000 1.3284483021 1.3262585027

50000 1.3284482942 1.3262584677

70000 1.3284483009 1.3262584678

90000 1.3284484156 1.3262584685

nt y1(0) = 1e− 7 y1(0) = 1e− 8

10000 1.3255637847 1.3253438688

30000 1.3255637777 1.3253438717

50000 1.3255637907 1.3253438696

70000 1.3255637846 1.3253438722

90000 1.3255637883 1.3253438734

nt y1(0) = 1e− 9 y1(0) = 1e− 10

10000 1.3252743299 1.3252523120

30000 1.3252743127 1.3252523109

50000 1.3252743092 1.3252523103

70000 1.3252743309 1.3252523396

90000 1.3252743270 1.3252523090

Figure 4. Dependence of the parameter of numerical calculation
y4(1) = aL when the integration step is reduced

Table 1. Dependence of the parameter of numerical calculation
y3(1) = ϕL on the number of points of division of the integration
interval

nt y1(0) = 1e− 5 y1(0) = 1e− 6

10000 1.4214229698 1.4223928883

30000 1.4214229698 1.4223928866

50000 1.4214229690 1.4223928917

70000 1.4214229703 1.4223928917

90000 1.4214226616 1.4223928914

nt y1(0) = 1e− 7 y1(0) = 1e− 8

10000 1.4226994821 1.4227964277

30000 1.4226994914 1.4227964467

50000 1.4226994789 1.4227964474

70000 1.4226995019 1.4227964507

90000 1.4226995003 1.4227964437

nt y1(0) = 1e− 9 y1(0) = 1e− 10

10000 1.4228270727 1.4228367696

30000 1.4228270768 1.4228367693

50000 1.4228270800 1.4228367700

70000 1.4228270738 1.4228367577

90000 1.4228270757 1.4228367744

of the quasi-singular initial problem of the ODE system
was carried out at (5) – (7) at iterative change of initial
conditions of jx, β. As a result, we obtained the depen-
dences that determine the domain of permissible values
of boundary conditions in the subspace (ϕL, aL), pre-
sented in Fig. 4.

The results of the numerical solution of the quasi-
singular initial problem allow us to formulate the fol-
lowing conclusions.

1. Restored characteristics of the boundary value prob-
lem in the first statement determine the smooth
functional in the space of (ϕL, aL)

2. Parameter β = y4(0) defines the point move-
ment for some “parabolic” curve (ϕL, aL)k =
Gk(β)|jx=j0x+k·∆j=const

3. When increasing jx = j0
x + k ·∆j “minimum” the

characteristics of Gk(β) with respect to the axis of
abcissus ( aL = 0) shifts to the right.

4. All “parabolic” curves Gk are restricted by asymp-
totes, i.e. the solution area at the right edge is lim-
ited. So, for example, the solution point ϕL = 1 and

Figure 5. Area of admissible values of boundary conditions in the
coordinate space ϕL, aL (for the blue domain jx ∈ (0.01, 0.1),
for the pink domain jx ∈ (0.1, 1), for the yellow domain jx ∈
(1.1, 3))
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Figure 6. Block diagram of the coordinate descent algorithm in the
domain (ϕL, aL)

aL = 4 does not exist.

5 Solution of the Inverse Problem by the Method of
Coordinate Descent

Consider Statement 1 of the inverse boundary value
problem Taking into account the chosen method of nu-
merical integration and the properties of the method’s
sensitivity when solving the initial quasi-singular prob-
lem (5) – (7), let us define the algorithm of the coordinate
descent in the domain (ϕL, aL)

1. Setting the boundary conditions sL(ϕL, aL) for so-
lution of the quasi-singular problem (5) – (7) and
numerical error of the solution εL regarding the Eu-
clidean norm.

2. Selection of arbitrary initial conditions jx
[0]
0 > 0

and β[0]
0 for solution of the quasi-singular problem

(5) – (7) for given ε(0)1 and ε(0)2; determination of
a starting point z[0]

0 = (jx
[0]
0 , β

[0]
0 ).

3. Solution of the quasi-singular problem (5) – (7) for
chosen initial conditions for determination of a start-
ing point of the method s[0]

0 (ϕL
[0]
0 , aL

[0]
0 ).

4. Determination of the Euclidean norm between point
sL and s[0]

0 .

d
[0]
0 = ‖sL − s[0]

0 ‖2

5. Determination of the initial coordinate step relative
to the initial conditions ∆z[0] = (∆j

[0]
x ,∆β[0]).

6. Assigning the current iteration of initial parameters
and starting the external coordinate descent cycle

7. Checking the cycle continuation criterion for the kth
epoch of the coordinate descent by the criterion

d[k] < εL

(a) When the condition is fulfilled, the transition
to the internal cycle (item 8)

(b) If the condition is not valid, the search is com-
pleted (item 12).

8. Internal cycle: a component local coordinate motion
relative to the given coordinate step at the current
epoch k:

z
[k]
il = z

[0]
0 ± (i∆j[k]

x , l∆β[0]).

9. Solution of the quasi-singular problem rela-
tive to the given coordinate step (5) – (7)
for determination of the next coordinate point
s

[k]
i+1,j+1(ϕL

[k]
i+1, aL

[k]
j+1).

10. Checking the condition of the internal cycle contin-
uation

d
[k]
i+1,j+1 < d

[k]
i,j .

11. (a) If the internal cycle condition is not met for
all coordinate directions of motion, the coor-
dinate step for the next iteration is reduced

∆z[k+1] =
∆z[k]

2
=

(
∆j

[k]
x

2
,

∆β[k]

2

)

and it’s reaching the external cycle level (item
7).

(b) if the internal loop condition is met, move to
the next iteration step (item 8).

12. Output of the result jx[k], β[k] .

The above algorithm, taking into account the limited
area of the solution in the domain (ϕL, aL) should also
contain the stop conditions in case of its cycling, for
example, when choosing such boundary conditions that
cannot be achieved due to the space of the solution of
the boundary functional (see Fig. 4). Therefore, to stop
the algorithm, we can offer a maximum limit on the
number of iterations of the external loop. So, for ex-
ample, if the initial step is ∆z[0] = (∆j

[0]
x ,∆β[0]) =

(1.0, 1.0), then already at the epoch with the index
k = 50 we will have a step of approximation ∆z[50] =
(1, 776e−15, 1, 776e−15), which can be considered a
good approximation.

6 Results of the Inverse Problem Numerical Solu-
tion

Here are examples of numerical solution trajectories
for (ϕ(x) and a(x) under different boundary conditions.
For computational experiments let us take test points:
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The experiment 1: ϕL = 1, aL = 1.
The experiment 2: ϕL = 8, aL = 3.
The experiment 3: ϕL = 0.3, aL = 0.8.

The specified test points lie in the area of boundary func-
tional solutions (4). The point ϕL = 0.3, aL = 0.8 ap-
proaches the upper asymptotic boundary.

Figure 7. Dependencies obtained as a result of the solution of the
inverse boundary value problem: a) ϕL = aL = 1 b) ϕL =
8, aL = 3

Experiment 1. Let us set ϕL = 1, aL = 1 be-
longing to the solution area at the right end. We need
to define jx, β. The starting point for the algorithm is
s

[0]
0 (0.2; 0.5), the step is ∆z[0] = (1; 1), the numerical

error of the solution is εL = 1e − 9 Results of the so-
lution of the boundary value problem by the coordinate
descent algorithm are given below.

Number of epochs k = 30
Euclidean norm error εL = 6.40e− 10
Restored characteristics:

jx = 0.53386065,

β = 0.87979170

Experiment 2. Let us set ϕL = 8, aL = 3, be-
longing to the solution area at the right end. We need
to define jx, β. The starting point for the algorithm is
s

[0]
0 (0.2; 0.5), the step is ∆z[0] = (1; 1), the numerical

error of the solution is εL = 1e − 8 Results of the so-

lution of the boundary value problem by the coordinate
descent algorithm are given below.

Number of epochs k = 28
Euclidean norm error εL = 6.58e− 09
Restored characteristics:

jx = 8.93482611,

β = 1.72846989

Graphs of the numerical solution are presented in Fig.
7, and the process of the coordinate descent for the nu-
merical solution is illustrated in Fig. 8:

Figure 8. The process of the coordinate descent of the solution of the
inverse boundary value problem: a) ϕL = aL = 1 b) ϕL =
8, aL = 3

Experiment 3. Let us set ϕL = 0.3, aL = 0.8, be-
longing to the solution area at the right end (these pa-
rameters characterize the limit solution of the boundary
value problem in relation to the domain of admissible
values, as they are close to the asymptotic solution). We
need to define jx, β. The starting point for the algorithm
is s[0]

0 (0.2; 0.5), the step is ∆z[0] = (1; 1), the numerical
error of the solution is εL = 1e−8 Results of the so-
lution of the boundary value problem by the coordinate
descent algorithm are given below.

Number of epochs k = 28
Euclidean norm error εL = 5.52e− 09
Restored characteristics:

jx = 0.07611568,

β = 0.75908224

During the testing of the algorithm it was determined
that the proposed algorithm showed good convergence
within the boundary functional area (Fig. 4). At the
same time, there were problems with convergence at the
boundaries of the boundary functional (limiting asymp-
totes of theGk functional) and the proposed algorithm of
coordinate search hovered relatively small values of the
step within the proposed criterion of the Euclidean norm.
To understand this aspect we considered functional de-
pendencies ϕL(jx) and aL(jx), which are obtained by
fixing parameter y4(0) = β = const (Fig. 9).

Dependencies analysis ϕL(jx) and aL(jx) has shown
that the following three areas can be separated in the so-
lution space of the boundary value problem
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Figure 11. The internal area of solving the boundary value problem
at growth β: a) 2d projection in a space ϕL, aL; b) 3d projection in
a coordinate space ϕL, aL, jx

Figure 9. Dependencies ϕL(jx), aL(jx)

Left asymptotic region of the boundary value prob-
lem solution relative to the points obtained for the
points with coordinates at

jx < argmin [min (ϕL(jx)) ,min (aL(jx))] ,

in which nonlinear harmonic fluctuations in charac-
teristics are observed.
The right stable area of the boundary value problem
solution relative to the points obtained at

jx > argmax [min (ϕL(jx)) ,min (aL(jx))] ,

Figure 10. Asymptotic area of boundary value problem solution at
growth β: a) 2d projection in a space ϕL, aL; b) 3d projection in a
coordinate space ϕL, aL, jx.

that shows smooth, increasing characteristics.
Transition area between the left and right regions
relative to the received points

jx ∈

[
argmin [min (ϕL(jx)) ,min (aL(jx))] ,

argmax [min (ϕL(jx)) ,min (aL(jx))]

]

Among the presented areas of interest are the asymp-
totic and internal areas of solution. The internal area of
the solution characterizes the parameters of the work of
“uninsulated diode” in the steady-state mode relative to
the initial given potentials of magnetic and electric fields.
Within the limits of the specified area it is possible to
draw a conclusion on a stable mode of work of a diode
and the unique decision of inverse boundary value prob-
lem within the limits of the first statement.

The key features of the solution are the following.

The unique solution inside the boundary functional
area G = f(ϕL, aL) exists.
The solution at the boundary of f the boundary func-
tional area Gk = f(ϕL, aL) is ”singular”, as there
is uncertainty of the solution concerning the bound-
ary functional asymptote. It happens because of the
fact that the edge characteristics with different cur-
rent jx fall on the asymptotes (5 3d graph.).
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Figure 12. Dependencies of the numerical solution ϕ̇(x), ȧ(x) for
jx = 0.2, β = 2.2, defining a point on the boundary functional
asymptoteGk

In the author’s opinion, the approach of the fast chan-
nel parameter optimization technique [Altsybeyev et al.,
2018] may also prove to be effective in the problem un-
der consideration.

7 Conclusion
Thus, numerical solution of the considered inverse

problem for the “uninsulated diode” demonstrates an in-
teresting boundary effect associated with the uncertainty
of the boundary solution. This effect due to the harmonic
instability of boundary parameters ϕL and aL on the
asymptotes of the solution with respect to the area of ac-
ceptable solutions of the functional Gk can give one and
the same solution of the inverse boundary value problem
at different boundary parameters of the current density
through the diode jx and the potential of the own mag-
netic field near the cathode β (Fig. 11). In this case the
inverse problem is in restoration of set of decisions and
research of borders of the given set. If to recollect princi-
ples of functioning of a vacuum diode and remarks about
its own noises the considered mathematical model in the
given area shows that small change of a magnetic field
(for example external effects) can considerably change
characteristics of a diode that characterizes approxima-
tions of characteristics of a diode to magnetic-isolating.
Also, the limiting effect is manifested in the coherent
fluctuation of the characteristics of the dependences of
the numerical solution relative to the first derivative of

ϕ̇(x), ȧ(x) (Fig. 12) These similarities require the intro-
duction of special methods of singular bifurcation analy-
sis, which will be discussed in subsequent articles in the
framework of the solution of other formulations of the
boundary value problem.
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