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Abstract 1 Introduction

The pendulum absorbers have been used for suppress-Recently, the use of helicopters has spread rapidly for
ing the vibrations in helicopter blades. The aim of this the prevention of disasters and the emergency medical
study is to clarify the mechanism of the vibration sup- care because of its superior mobility. However, due
pression. But, most of the previous studies analyzed itsto the large vibration of a helicopter, there are possi-
characteristics based on the linear theory and explainedoilities to exert harmful influences to passengers and
focusing on the anti-resonance point. Since the pen-emergency patients. In addition, the vibration induces
dulum may vibrate with large amplitude, it is expected fatigue in the structure. Especially, vibration of the
that the nonlinearity have essential influence on its vi- blade of helicopter is extremely important because it
bration characteristics. Therefore, we investigated the is the principal cause of helicopter vibration. Periodic
vibration suppression of a pendulum absorber consider-external force working to the blade is induced by the
ing its nonlinearity. In our first report, we proposed a 2- aerodynamic force, and it excites the vibration of the
degree-of-freedom (2DOF) model composed of a rigid blade at integral multiple frequencies of the rotational
blade and a pendulum absorber. The blade is excite”

by giving a sinusoidal deflection at its end. In the sec- A .

. erodynamic force F

ond report, we proposed a 3DOF model by adding the
fuselage, where the blade is also considered rigid. Thi N
blade is excited by a distributed force which changes

sinusoidally. In this paper, a 3DOF model which is
composed of a mass corresponding to a rotor moun
on the fuselage, a flexible blade, and a pendulum is
discussed. A periodic distributed force is given on the
blade. This study clarified the mechanism of the pen- c % L M X
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dulum absorbers for suppressing the vibrations of heli-
copters based on the nonlinearity theory.
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Figure 1. Model for a blade, a pendulum absorber and a rotor
mount.



speed [Saito, et al., 1993; Kato and Imanaga, 1985]. can move in the vertical direction. The pendulum sup-
Nowadays, pendulum absorber is applied to heli- press the vibration of this mount. Therefore, the vi-
copters as one of the vibration suppression devices ofbration transferred to the main body is decreased. The
helicopters. Though the pendulum absorbers have de-stationary coordinate system-@yz is defined in the
signed to use anti-resonance point based on the lin-stationary condition. The origin is located at the cross
ear theory, there is no detailed study of its charac- point of the shaft and the blade, the x-axis is taken
teristics [Taylor and Teare,1975; Amerand Neff,1974; in horizontal direction which coincides with the blade,
Viswanathan and McClure,1983]. Our previous paper and the z-direction is taken in the vertical direction.
[Nagasaka, et al.,2007] modeled a rigid blade and a The blade rotates around the z-axis with the angular
pendulum absorber as 2DOF oscillatory system with velocity Q2. It is assumed that an external force with the
the forced displacement. And the vibration suppres- angular frequencyd =n(2, nOJ integef] and with the
sion mechanism, the effect of parameters of a pendu-magnitude proportional to the squarefdfvorks to all
lum, and the limit of its effectiveness are clarified by parts of the blade.
numerical simulation, theoretical analysis and experi- Let the vertical deflections of the free end and the end
ments considering nonlinearity. fixed to the shaft be; and z;, and the angle of the
This paper treats the first elastic mode of the blade, pendulum in the equilibrium condition and the angle in
and consider 3DOF vibration system with a blade oscillation befly andd, respectively.
fixed to the shaft, a pendulum absorber, and a ro-
tor mount including drive-train elastically-supported
to fuselage(See Figl). It is assumed that external 2'1_ Energy of blade )
force that has integral multiple frequencies of rotational It 1S assumed that the shape of the first mode of the
speed of a blade and amplitude that proportional to the P€am during the rotation can be approximated by the
square of a blade velocity works to the system. A pen- Shape of the first mode of a non-rotating beam. Then,
dulum absorber suppress vibration of a blade, and as &€ Vertical deflectiori(s) of the beam of lengtti. at
result, vibration of a rotor mount is suppressed and the the position of distance from the origin is represented
vibration transmitted to fuselage decreases. by
Organization of the paper is as follows. Second section
explains the modeling of the study and deals with the
energy of blade. Third section presents the simulation
results. Finally fourth section shows the conclusions
for the study.

h(s) = (sin A + sinh \)(cos )\% — cosh )\%)

1)
—(cos A + cosh A)(sin )\% — sinh )\%)

Where is the characteristic root corresponding to the

2 Modeling first mode. Then the vertical deflection of the beam at
In our previous research [Nagasaka, et al.,2007], we the positions, w(s, t), is represented by

assumed that a helicopter blade is a rigid body con-
nected to a rotor by a hinge. We analyzed this model
and made experiments with the corresponding setup. In w(s,t) =
this paper, a model with elastic blades are studied nu-
merically. For simplicity, only the first elastic mode is

considered. . The point at the distanceshifts towards the origin due
F|gurel shows the theoretical model of 3DOF SyStem to the deﬂectiom(s, t) and this distance is given as
composed of a rotor blade, a pendulum absorber andsg||ows.

a mount. The blade is a thin beam with a rectangular
cross section. One end is fixed to the vertical rotating )
shaft and the other end is free. The length of the blade  _ /s 1 (311)) ds
is L and its mass i9/. A pendulum with the mass: 0

and the lengtli is mounted on the blade at the position 1 5/ dh
a from the rotating shaft. This pendulum can swing in - 2h2(L) /0 (

a vertical plane defined by the shaft and the blade. Itis
assumed that the blade is flexible in this vertical plane.
In the following analysis, only the first mode flexural
oscillation is considered and its high mode and the vi-
brations in the other directions, torsional and transla- 1 s (dh(s)\>
tional vibrations, are neglected. The mount with mass H(s) = 212(L) / ( s ) d
M, which composed with the shaft and the driving 0

system, is supported on the main body by the spring

with the spring constant; and the damper with the The coordinategz, y, z) representing the position of
damping coefficient;. It is assumed that this mount the point on the beam at the distancare represented

)

where

“4)




by

x = (s —u)cos

y=(s— u}z(ssl? Qt ®)
z=2z5+ h(L)Zb

The kinetic energy of the beam is given as follows:

1 L
T, = 5pA/ (&% + 9% + 2%)ds
0

273
:;pA<QSL + Lzs? (6)

—2H, Q%22 + Ho%p? + 2H4z'bz'f>

where the accuracies of the quantitigsand z, are
O(e¢) and the quantities smaller than and equabte®)

The kinetic energy of the pendulum is given as fol-
lows.

1
Ty = gm(y + 1+ 4)

1 .
=5m Q% {a + Isin(0 + 6y)}> + 1262 (10)
+Z'f2 + H5221,2 + 2H5Z'b2’.f

+210(25 + Hs%) sin(0 + )

The potential energy of the pendulum is given by
Up =mgz, = mgzy + Hzzy, — Lcos(0 + 6p) (11)

2.3 Energy of rotor mount
Suppose that the mount moves in the vertical direc-
tion. Let mass of the mount b/ ; and the position be

are neglected. The potential energy of the blade is zs. The kinetic energy of the mount is represented by

given by

2
U, = ;/{fEI(g?;) ds
k h(s)
+pAg/0 {zf+ h<L)Zb}d5 (7)

1
= 5Estzg + pAg(Lzs + Hyzp)

1
Ty = 5 M2 (12)

The potential energy of the mount is represented by

1
Up = ikfzj% + Mygzy (13)

where E is Young’s modulus and | is the cross-sectional 24 Nonconservative force

area of moment of inertia and

Hy = / " H(s)ds

1 Lo,

H, = hQ(L)/O h*(s)ds

IR ION
Hg_hQ(L)/O ( dSZ >ds ®

L

H4:ﬁ/0 h(s)ds

_ h(a)
=)

2.2 Energy of pendulum

The nonconcervative force working to the blade is the
viscous damping force and the aerodynamic force. As-
sume that the viscous damping forces proportional to
the velocityz; of the body, the velocity, of the free
end of the blade and the angular veloditgf the pen-
dulunO Let the coefficients of these viscous damping
force becy, ¢, andcp, respectively. The dissipating
function of the system is

1 1 . 1
D= 5652'52 + 5 p92 + §CfZ'f2 (14)

Let the external force distribute on the whole blade
and works periodically. Let the magnitude of the force
per unit length be and its frequency be. Since the
magnitudeF’ is proportional to the square of the blade

Let the coordinate of the pendulum mass be velocity, it can be represented by

(@, Yp, 2p). They are represented by

xp = {a+1sin(d + 6p)} cosQt
yp = {a+ lsin(f + ) } sin Q¢ )

Z((Z)) zp — Lcos(8 + bp)

Zp = Zf +

F = F1(Qs)? (15)

whereF, is the coefficient.
From the principle of virtual work, we can obtain the



force @), working to the blade and the forcg; work-
ing to the mount as follows.

L
Qb:/o Fggz))dscoswt

—_ 02
= O°Fp Hgcoswt (16)

L
1 .
Qf = / Fdscoswt = EL‘SQQFL coswt
0
where

Hg = L /L s2h(s)ds 17)
0

2.5 Lagrange equation
The lagrangeat is given by

L= (Ty = Uy) + (T, = Up) + (Ty — Uy)

1 023
= pA< 3 + LZ.f2

2

—2H1Q%27 + Ha%” + 2H4z'bz'f>

1
{QEIngf + pAg(Lzy + H4zb)}

—|—%m {Qz{a—l—lsinw +60)}? (18)

+120% + 252 + H2%,2 + 2Hs %%y

+210(25 + Hs2) sin(0 + 90)}

—mg{z; + Hsz, — lcos(8 + 6p)}
1 1

+§Mf2'f2 — §kf2? — My¢gzy

Using Lagrange’s equations, we can derive the equa-
tions of motion for the blade, the pendulum and the

mount as follows.

O?F; Hg coswt =
pA(Hs2z, + HaZy + 2Q%Hy 2p)
+m{HZ2z, + H5%y (19)
+IH50sin(0 4 0o) + LH502 cos(0 + 6p)}
+cpZy + EIH3zy, + pAgHy + mgHs

0 = mi{l6 + 25 sin(0 + 6o)
+Hszysin(0 + 00)} + ¢,0
—m$Q2%(a + Isin( + 6p)) cos(6 + 6p)
+mglsin(f + 6p)

(20)

1
§L3QQFL coswt = (pAL +m + My)Z}

+(pAH4 + mH5)zb (21)
+ml{fsin(0 + 6y) + 62 cos(6 + 6)}
+cpzp +kpzp + (pPAL + My +m)g

3 Simulation results
3.1 Vibration suppression with a tuned pendulum

Figure 2 shows natural frequencies of a blade, a pen-
dulum and a rotor mount when the pendulum synchro-
nized to the frequency of the external force with the
frequencyw = 4Q) [Nagasaka, et al.,2007]. Figures
3 to 5 show their amplitude calculated by integrating
Egs.(19) - (21) numerically.

The parameter values used for the numerical calcula-
tions are shown in table 1.

The results of numerical simulations proved that the
pendulum behaves as a absorber and can reduce the
blade vibration and the rotor mount oscillation at a
blade resonance point. Additionally, a pendulum re-
duces rotor mount resonance. However, unlike the rigid
blade, vibration is not suppressed enough in the large
rotational speed range.

Table 1. Parameters for numerical simulations

parameters value

M 0.108 [kg]

p 2698.0 [kg/nt]
E 7.03x 100 [N/m?]
L 0.4 [m]

A 1.875

e 0.0523 [Ns/m]
A 1.0x10~4 [m?]

¢ 0.007 [m]

a 0.1[m]

m 0.036 [kg]

p 3.1x107? [N-s/rad]
M; 0.054 [kg]

ky 1.0 [N/m]

cr 6.0x10~* [N-s/m]
Fr, 0.05 [N]
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Figure 6. Effect of pendulum locatiam

3.2 Effect of a pendulum locationa

Figure 6 shows the effect of a pendulum locatioto
vibration suppression capability of a tuned pendulum
absorber under constant rotational speed. As the result3.3 Effect of a pendulum tuning

it becomes clear that the effect of vibration suppression As described in the previous paper, the pendulum
capability is lost in some specific range. This is due to natural frequency is given bf2\/1+ a/l. There-
the location of the node of the first mode is this range. fore a pendulum tuning is determined by coefficient
Generally, in helicopters, it is preferable to install pen- /1 +a/l. Here, we adopt the pendulum location
dulum absorbers as close as possible to the shaft due ta = 0.1. Then, the natural frequency of the pendu-
the aerodynamic requirement. lum is tuned by adjusting the pendulum length
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In order to indicates pendulum tuning, we introduce
the number of oscillations per one revolution of a blade.
Generally pendulum tuning is determined so as to syn-
chronize to the frequency of the external force accord-
ing to the linear theory. Therefore, in this case, 4/rev.
is the optimum value.

Figure 7 shows the effect of pendulum tuning. This
result shows that most effective pendulum tuning is the
range from 3.7 to 3.8/rev. The range of optimum tun-
ing varies due to rotational spe@dso it is necessary to
determine a pendulum tuning for each rotational speed,
respectively.
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ulation is important.

3.4 Effect of a pendulum nonlinearity

When the external force is small, as shown in figures
3to 5, amplitude of a pendulum is smaller than 1.0 rad,
and there is not obvious nonlinearity. In case the ex-
ternal force is larger, amplitude of a pendulum exceeds
1.0 rad, and the resonance curve of a blade and a fuse-
lage become soft-spring type because of nonlinearity
of a pendulum, see figures 8. Additionally, proximity
at 200 rpm, amplitude of a pendulum exceeds, and

a pendulum begin to rotate. In the result the effect of vi-
bration suppression capability is lost. Also, in figures
8, the results of linear simulation is indicated. In lin-
ear simulation, a pendulum never rotates even though
the amplitude of a pendulum exceed®. This result
differ from actual phenomenon. Hence, nonlinear sim-



4 Conclusion

The objective of this study is to test the us-
age/application of the pendulum absorber for the sup-
pressing of vibration in the helicopter blades. This
study treat a blade as the first elastic mode and its main
discussion on 3DOF model with a blade under exter-
nal force, a pendulum, and a rotor mount elastically-
supported to fuselage. According to the result of nu-
merical simulations, it became significant that a pendu-
lum absorber can suppress vibration of both the blade
and the rotor mount when the natural frequency of pen-
dulum is synchronized to the frequency of the external
force. Moreover the effect of the pendulum location to
vibration suppression is also explained in the study.
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