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Abstract
The pendulum absorbers have been used for suppress-

ing the vibrations in helicopter blades. The aim of this
study is to clarify the mechanism of the vibration sup-
pression. But, most of the previous studies analyzed its
characteristics based on the linear theory and explained
focusing on the anti-resonance point. Since the pen-
dulum may vibrate with large amplitude, it is expected
that the nonlinearity have essential influence on its vi-
bration characteristics. Therefore, we investigated the
vibration suppression of a pendulum absorber consider-
ing its nonlinearity. In our first report, we proposed a 2-
degree-of-freedom (2DOF) model composed of a rigid
blade and a pendulum absorber. The blade is excited
by giving a sinusoidal deflection at its end. In the sec-
ond report, we proposed a 3DOF model by adding the
fuselage, where the blade is also considered rigid. The
blade is excited by a distributed force which changes
sinusoidally. In this paper, a 3DOF model which is
composed of a mass corresponding to a rotor mount
on the fuselage, a flexible blade, and a pendulum is
discussed. A periodic distributed force is given on the
blade. This study clarified the mechanism of the pen-
dulum absorbers for suppressing the vibrations of heli-
copters based on the nonlinearity theory.
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1 Introduction
Recently, the use of helicopters has spread rapidly for

the prevention of disasters and the emergency medical
care because of its superior mobility. However, due
to the large vibration of a helicopter, there are possi-
bilities to exert harmful influences to passengers and
emergency patients. In addition, the vibration induces
fatigue in the structure. Especially, vibration of the
blade of helicopter is extremely important because it
is the principal cause of helicopter vibration. Periodic
external force working to the blade is induced by the
aerodynamic force, and it excites the vibration of the
blade at integral multiple frequencies of the rotational
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speed [Saito, et al., 1993; Kato and Imanaga, 1985].
Nowadays, pendulum absorber is applied to heli-

copters as one of the vibration suppression devices of
helicopters. Though the pendulum absorbers have de-
signed to use anti-resonance point based on the lin-
ear theory, there is no detailed study of its charac-
teristics [Taylor and Teare,1975; Amerand Neff,1974;
Viswanathan and McClure,1983]. Our previous paper
[Nagasaka, et al.,2007] modeled a rigid blade and a
pendulum absorber as 2DOF oscillatory system with
the forced displacement. And the vibration suppres-
sion mechanism, the effect of parameters of a pendu-
lum, and the limit of its effectiveness are clarified by
numerical simulation, theoretical analysis and experi-
ments considering nonlinearity.
This paper treats the first elastic mode of the blade,

and consider 3DOF vibration system with a blade
fixed to the shaft, a pendulum absorber, and a ro-
tor mount including drive-train elastically-supported
to fuselage(See Fig1). It is assumed that external
force that has integral multiple frequencies of rotational
speed of a blade and amplitude that proportional to the
square of a blade velocity works to the system. A pen-
dulum absorber suppress vibration of a blade, and as a
result, vibration of a rotor mount is suppressed and the
vibration transmitted to fuselage decreases.
Organization of the paper is as follows. Second section
explains the modeling of the study and deals with the
energy of blade. Third section presents the simulation
results. Finally fourth section shows the conclusions
for the study.

2 Modeling
In our previous research [Nagasaka, et al.,2007], we

assumed that a helicopter blade is a rigid body con-
nected to a rotor by a hinge. We analyzed this model
and made experiments with the corresponding setup. In
this paper, a model with elastic blades are studied nu-
merically. For simplicity, only the first elastic mode is
considered.
Figure1 shows the theoretical model of 3DOF system

composed of a rotor blade, a pendulum absorber and
a mount. The blade is a thin beam with a rectangular
cross section. One end is fixed to the vertical rotating
shaft and the other end is free. The length of the blade
is L and its mass isM . A pendulum with the massm
and the lengthl is mounted on the blade at the position
a from the rotating shaft. This pendulum can swing in
a vertical plane defined by the shaft and the blade. It is
assumed that the blade is flexible in this vertical plane.
In the following analysis, only the first mode flexural
oscillation is considered and its high mode and the vi-
brations in the other directions, torsional and transla-
tional vibrations, are neglected. The mount with mass
Mf , which composed with the shaft and the driving
system, is supported on the main body by the spring
with the spring constantkf and the damper with the
damping coefficientcf . It is assumed that this mount

can move in the vertical direction. The pendulum sup-
press the vibration of this mount. Therefore, the vi-
bration transferred to the main body is decreased. The
stationary coordinate system O−xyz is defined in the
stationary condition. The origin is located at the cross
point of the shaft and the blade, the x-axis is taken
in horizontal direction which coincides with the blade,
and the z-direction is taken in the vertical direction.
The blade rotates around the z-axis with the angular
velocityΩ. It is assumed that an external force with the
angular frequencyω（=nΩ, n：integer） and with the
magnitude proportional to the square ofΩ works to all
parts of the blade.
Let the vertical deflections of the free end and the end
fixed to the shaft bezb and zf , and the angle of the
pendulum in the equilibrium condition and the angle in
oscillation beθ0 andθ, respectively.

2.1 Energy of blade
It is assumed that the shape of the first mode of the

beam during the rotation can be approximated by the
shape of the first mode of a non-rotating beam. Then,
the vertical deflectionh(s) of the beam of lengthL at
the position of distances from the origin is represented
by

h(s) = (sinλ + sinhλ)(cosλ
s

L
− cosh λ

s

L
)

−(cos λ + cosh λ)(sinλ
s

L
− sinhλ

s

L
)

(1)

Whereλ is the characteristic root corresponding to the
first mode. Then the vertical deflection of the beam at
the positions, w(s, t), is represented by

w(s, t) =
h(s)
h(L)

zb (2)

The point at the distances shifts towards the origin due
to the deflectionw(s, t) and this distanceu is given as
follows.

u =
∫ s

0

1
2

(
∂w

∂s

)2

ds

=
1

2h2(L)

∫ s

0

(
dh(s)

ds

)2

dsz2
b = H(s)z2

b

(3)

where

H(s) =
1

2h2(L)

∫ s

0

(
dh(s)

ds

)2

ds (4)

The coordinates(x, y, z) representing the position of
the point on the beam at the distances are represented



by

x = (s − u) cosΩt
y = (s − u) sinΩt

z = zf +
h(s)
h(L)

zb

 (5)

The kinetic energy of the beam is given as follows:

Tb =
1
2
ρA

∫ L

0

(ẋ2 + ẏ2 + ż2)ds

=
1
2
ρA

(
Ω2L3

3
+ Lżf

2

−2H1Ω2z2
b + H2żb

2 + 2H4żbżf

) (6)

where the accuracies of the quantitieszb and żb are
O(ϵ) and the quantities smaller than and equal toO(ϵ3)
are neglected. The potential energy of the blade is
given by

Ub =
1
2

∫ L

0

EI

(
∂2w

∂s2

)2

ds

+ρAg
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0

{
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}
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=
1
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EIH3z

2
b + ρAg(Lzf + H4zb)

(7)

where E is Young’s modulus and I is the cross-sectional
area of moment of inertia and

H1 =
∫ L

0

sH(s)ds

H2 =
1

h2(L)

∫ L

0

h2(s)ds
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1
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0
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)2

ds
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1
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0
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h(a)
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(8)

2.2 Energy of pendulum
Let the coordinate of the pendulum mass be

(xp, yp, zp). They are represented by

xp = {a + l sin(θ + θ0)} cosΩt
yp = {a + l sin(θ + θ0)} sinΩt

zp = zf +
h(a)
h(L)

zb − l cos(θ + θ0)

 (9)

The kinetic energy of the pendulum is given as fol-
lows.

Tp =
1
2
m(ẋ2

p + ẏ2
p + ż2

p)

=
1
2
m

[
Ω2{a + l sin(θ + θ0)}2 + l2θ̇2

+żf
2 + H2

5 żb
2 + 2H5żbżf

+2lθ̇(żf + H5żb) sin(θ + θ0)
]

(10)

The potential energy of the pendulum is given by

Up = mgzp = mgzf + H5zb − l cos(θ + θ0) (11)

2.3 Energy of rotor mount
Suppose that the mount moves in the vertical direc-

tion. Let mass of the mount beMf and the position be
zf . The kinetic energy of the mount is represented by

Tf =
1
2
Mf żf

2 (12)

The potential energy of the mount is represented by

Uf =
1
2
kfz2

f + Mfgzf (13)

2.4 Nonconservative force
The nonconcervative force working to the blade is the

viscous damping force and the aerodynamic force. As-
sume that the viscous damping forces proportional to
the velocityżf of the body, the velocityżb of the free
end of the blade and the angular velocityθ̇ of the pen-
dulum． Let the coefficients of these viscous damping
force becf , cb and cp, respectively. The dissipating
function of the system is

D =
1
2
cbżb

2 +
1
2
cpθ̇

2 +
1
2
cf żf

2 (14)

Let the external force distribute on the whole blade
and works periodically. Let the magnitude of the force
per unit length beF and its frequency beω. Since the
magnitudeF is proportional to the square of the blade
velocity, it can be represented by

F = FL(Ωs)2 (15)

whereFL is the coefficient.
From the principle of virtual work, we can obtain the



forceQb working to the blade and the forceQf work-
ing to the mount as follows.

Qb =
∫ L

0

F
h(s)
h(L)

ds cos ωt

= Ω2FLH6 cos ωt

Qf =
∫ L

0

Fds cos ωt =
1
3
L3Ω2FL cos ωt


(16)

where

H6 =
1

h(L)

∫ L

0

s2h(s)ds (17)

2.5 Lagrange equation
The lagrangeanL is given by

L = (Tb − Ub) + (Tp − Up) + (Tf − Uf )

=
1
2
ρA
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3
+ Lżf

2

−2H1Ω2z2
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5 żb
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]

−mg{zf + H5zb − l cos(θ + θ0)}

+
1
2
Mf żf

2 − 1
2
kfz2

f − Mfgzf

(18)

Using Lagrange’s equations, we can derive the equa-
tions of motion for the blade, the pendulum and the
mount as follows.

Ω2FLH6 cos ωt =
ρA(H2z̈b + H4z̈f + 2Ω2H1zb)

+m{H2
5 z̈b + H5z̈f

+lH5θ̈ sin(θ + θ0) + lH5θ̇
2 cos(θ + θ0)}

+cbżb + EIH3zb + ρAgH4 + mgH5


(19)

0 = ml{lθ̈ + z̈f sin(θ + θ0)

+H5z̈b sin(θ + θ0)} + cpθ̇

−mΩ2l(a + l sin(θ + θ0)) cos(θ + θ0)
+mgl sin(θ + θ0)

 (20)

1
3
L3Ω2FL cos ωt = (ρAL + m + Mf )z̈f

+(ρAH4 + mH5)z̈b

+mℓ{θ̈ sin(θ + θ0) + θ̇2 cos(θ + θ0)}
+cf żf + kfzf + (ρAL + Mf + m)g


(21)

3 Simulation results
3.1 Vibration suppression with a tuned pendulum
Figure 2 shows natural frequencies of a blade, a pen-

dulum and a rotor mount when the pendulum synchro-
nized to the frequency of the external force with the
frequencyω = 4Ω [Nagasaka, et al.,2007]. Figures
3 to 5 show their amplitude calculated by integrating
Eqs.(19) - (21) numerically.
The parameter values used for the numerical calcula-

tions are shown in table 1.
The results of numerical simulations proved that the

pendulum behaves as a absorber and can reduce the
blade vibration and the rotor mount oscillation at a
blade resonance point. Additionally, a pendulum re-
duces rotor mount resonance. However, unlike the rigid
blade, vibration is not suppressed enough in the large
rotational speed range.

Table 1. Parameters for numerical simulations

parameters value

M 0.108 [kg]

ρ 2698.0 [kg/m3]

E 7.03×1010 [N/m2]

L 0.4 [m]

λ 1.875

cb 0.0523 [N·s/m]

A 1.0×10−4 [m2]

ℓ 0.007 [m]

a 0.1 [m]

m 0.036 [kg]

cp 3.1×10−5 [N·s/rad]

Mf 0.054 [kg]

kf 1.0 [N/m]

cf 6.0×10−4 [N·s/m]

FL 0.05 [N]
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3.2 Effect of a pendulum locationa

Figure 6 shows the effect of a pendulum locationa to
vibration suppression capability of a tuned pendulum
absorber under constant rotational speed. As the result,
it becomes clear that the effect of vibration suppression
capability is lost in some specific range. This is due to
the location of the node of the first mode is this range.
Generally, in helicopters, it is preferable to install pen-
dulum absorbers as close as possible to the shaft due to
the aerodynamic requirement.
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Figure 5. Amplitude of a pendulum

Figure 6 indicates that the optimum location for the
pendulum is approximatelya = 0.1.
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Figure 6. Effect of pendulum locationa

3.3 Effect of a pendulum tuning
As described in the previous paper, the pendulum

natural frequency is given byΩ
√

1 + a/l. There-
fore a pendulum tuning is determined by coefficient√

1 + a/l. Here, we adopt the pendulum location
a = 0.1. Then, the natural frequency of the pendu-
lum is tuned by adjusting the pendulum lengthl.
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In order to indicates pendulum tuning, we introduce
the number of oscillations per one revolution of a blade.
Generally pendulum tuning is determined so as to syn-
chronize to the frequency of the external force accord-
ing to the linear theory. Therefore, in this case, 4/rev.
is the optimum value.
Figure 7 shows the effect of pendulum tuning. This

result shows that most effective pendulum tuning is the
range from 3.7 to 3.8/rev. The range of optimum tun-
ing varies due to rotational speedΩ, so it is necessary to
determine a pendulum tuning for each rotational speed,
respectively.

3.4 Effect of a pendulum nonlinearity
When the external force is small, as shown in figures

3 to 5, amplitude of a pendulum is smaller than 1.0 rad,
and there is not obvious nonlinearity. In case the ex-
ternal force is larger, amplitude of a pendulum exceeds
1.0 rad, and the resonance curve of a blade and a fuse-
lage become soft-spring type because of nonlinearity
of a pendulum, see figures 8. Additionally, proximity
at 200 rpm, amplitude of a pendulum exceedsπ/2, and
a pendulum begin to rotate. In the result the effect of vi-
bration suppression capability is lost. Also, in figures
8, the results of linear simulation is indicated. In lin-
ear simulation, a pendulum never rotates even though
the amplitude of a pendulum exceedsπ/2. This result
differ from actual phenomenon. Hence, nonlinear sim-
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ulation is important.



4 Conclusion
The objective of this study is to test the us-

age/application of the pendulum absorber for the sup-
pressing of vibration in the helicopter blades. This
study treat a blade as the first elastic mode and its main
discussion on 3DOF model with a blade under exter-
nal force, a pendulum, and a rotor mount elastically-
supported to fuselage. According to the result of nu-
merical simulations, it became significant that a pendu-
lum absorber can suppress vibration of both the blade
and the rotor mount when the natural frequency of pen-
dulum is synchronized to the frequency of the external
force. Moreover the effect of the pendulum location to
vibration suppression is also explained in the study.
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