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Abstract
The method of detection of the unstable periodic

spatio-temporal states of spatial extended chaotic sys-
tems has been proposed. The application of this
method is illustrated by the consideration of two differ-
ent systems: (i) the fluid model of Pierce diode being
one of the fundamental system of the physics of plas-
mas and (ii) the complex one-dimensional Ginzburg-
Landau equation demonstrating different regimes of
spatio-temporal chaos.
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1 Introduction
It is well known that the unstable periodic orbits

(UPOs) embedded into chaotic attractors play an im-
portant role in the dynamics of the systems with a small
number of the degree of freedom (Cvitanović, 1988).
The chaotic regime of the system may be character-
ized by means of the set of UPOs (Carroll, 1999). A
universal and powerful tool for exploration of chaotic
dynamics (Cvitanović, 1991), UPOs proved to be es-
pecially efficient in context of chaotic synchroniza-
tion (Pikovskyet al., 1997a; Pikovsky et al., 1997b;
Hramovet al., 2005) and the problem of the chaos con-
trolling (Ott et al., 1990). In the last case UPOs may
be stabilized by means of the week influence on the
system dynamics by the small variation of the control
parameter (Ottet al., 1990) or with the delay feedback
(Pyragas, 1992).
In the spatial extended systems the unstable periodic

spatio-temporal states (UPSTSs) exist (Franceschiniet
al., 1999) which are similar to the UPOs in the chaotic
systems with a small number of the degree of free-
dom. In particular, the chaotic dynamics of spatial ex-
tended systems may be controlled by stabilizing such
unstable periodic spatio-temporal states (Boccalettiet

al., 1999). Therefore, one of the important prob-
lem connected with the study of the spatial extended
chaotic system is finding these UPSTSs. It is appropri-
ate to suggest that the methods aimed at the search of
UPOs of the dynamical systems with small dimension
of phase space may be adapted to the spatial extended
systems. The method proposed by D.P. Lathrop and
E.J. Kostelich (Lathrop and Kostelich, 1989), as an ex-
ample, had been used to pick out UPSTSs for the fluid
model of Pierce diode (Rempen and Hramov, 2004).
This method is based on the obtaining the histograms
describing the frequency of system returning to the
vicinity of UPOs (in the low-dimensional systems) or
UPSTSs (in the spatial extended systems), respectively.
Nevertheless, this method applied to spatial extended
systems is rather imprecise and time-consuming.
In this report we describe the modification of

the method of P. Schmelcher and F. Diakonos (SD–
method) (Schmelcher and Diakonos, 1997; Pingelet
al., 2001) allowing precise detection of UPSTSs in
the spatial extended chaotic systems (Hramov and
Koronovskii, 2007). As the sample analyzed spa-
tially extended chaotic systems we consider here the
one-dimensional complex Ginzburg-Landau equation
(CGLE) and the fluid model of Pierce diode.

2 Detection of UPSTS of chaotic dynamics in the
Pierce diode

As the primary system under study we have used the
fluid model of Pierce diode (Godfrey, 1987; Hramov
and Rempen, 2004) being one of the simplest beam-
plasma systems demonstrating chaotic dynamics. It
consists of two plane infinite grids pierced by the elec-
tron beam. The grids are grounded and the distance be-
tween them isL. The entrance space charge densityρ0

and velocityv0 are maintained constant. The space be-
tween the grids is evenly filled by the neutralizing ions
with density|ρi/ρ0| = 1. The dynamics of this system
is defined by the only parameter, the so-called Pierce



parameterα = ωpL/v0, whereωp is the plasma fre-
quency. Withα > π Pierce instability develops, which
leads to the appearance of the virtual cathode. At the
same time, withα ∼ 3π, the instability is limited by
non-linearity and the regime of complete passing of the
electron beam through the diode space can be observed.
In this case the system can be described by the partial
differential equations:
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(1)
with the boundary conditions:

v(0, t) = 1, ρ(0, t) = 1, ϕ(0, t) = ϕ(1, t) = 0.
(2)

In equations (1)–(2) the non-dimensional variables
(space charge potentialϕ, densityρ, velocity v, space
coordinatex and timet) are used (see, for example,
(Hramov and Rempen, 2004; Filatovet al., 2006)).
One of the core problems related to the spatial ex-

tended system consideration is the infinite dimension
of the “phase space”W∞. As a consequence, the
stateU(x, t) of the system of study should be con-
sidered instead of vectorx(t) in R

n as in the case
of the flow systems. For the system (1) this state
U(x, t) = (v(x, t), ρ(x, t), ϕ(x, t))T is the vector of
the functions characterizing the system dynamics. Af-
ter the transient finished the set of the statesU(x, t)
may be considered as attracting subspaceW s of the
infinite–dimensional “phase space”W∞ of the spatial
extended system under study. If the dimension of this
subspace is finite, the finite-dimensional spaceR

m of
variables may be used to describe the dynamics of the
spatial extended system.
In is well-known that SD-method was developed to

the UPOs detection in the systems with discrete time,
although it may be also applied to the flow sys-
tems (Pingelet al., 2001) by means of reducing them to
maps with the help of Poincaré secant. In order to ap-
ply the SD method to an extended system, we assume
that its infinite-dimensional phase space possesses the
low-dimensional attracting invariant subspaceW s, and
the desired solution lies in this subspace. Further, we
construct the auxiliary systemy(t) in which the vector
field y is in one-to-one correspondence withW s.
The stationary statesU0(x, t) = U0(x) of the spa-

tial extended system correspond to the fixed points in
the phase space of the auxiliary system, while the pe-
riodic spatio-temporal states of (1) are in one-to-one
correspondence with the periodic orbits of the finite-
dimensional systemy(t). Therefore, UPSTSs of spa-
tial extended system may be found by means of the
detection of UPOs of the auxiliary finite-dimensional
system.
There are many well-known methods for applying

low-dimensional variable space to describe the behav-
ior of the spatial extended system, among which a typi-
cal one is the mode expansion method. Therein we pro-

pose the use of the variables taken from several points
xi of the extended system space to construct the finite
dimensional system

y(t) = (ρ(x1, t), . . . , ρ(xm, t))T , (3)

where m is the dimension of the auxiliary system,
xi = iL/(m + 1), i = 1, m. In comparison with the
other known methods (for example, Galerkin method),
such approach allows us to undergo easily from the
spatial extended system stateU(x, t) to the low–
dimensional vectory(t) without any additional calcu-
lations.
For the system under study (1) we have estimated

the dimension of the auxiliary vectory(t) asm = 3.
This assumption is based on the results of the consid-
eration of the finite-dimensional model of the Pierce
diode dynamics obtained with the help of Galerkin
method (Hramov and Rempen, 2004).
To confirm meeting of the requirements of the one-

to-one correspondence between stateU(x, t) of the
spatial extended system and vectory(t) of the con-
structed auxiliary system with the small number of de-
gree of freedom we have used the neighbour method
(Pecoraet al., 1995). We have examined that the dis-
tanced(y1,y2) = ||y1 − y2|| between two vectors
y1 = y(t1) andy2 = y(t2) taken in the arbitrary mo-
ments of timet1 andt2 is close to zero if and only if
the distanceS(U1,U2) between two different states
U(x, t1) andU(x, t2) of the spatial extended system
taken in the same moments of timet1 and t2 is also
small. The distanceS(U1,U2) has been defined as

S(U1,U2) =

(
∫ 1

0

‖U1(x, t) − U2(x, t)‖
2

dx

)1/2

,

(4)
where|| · || is Euclidian norm. According to the neigh-
bour method it means that there is the one-to-one corre-
spondence betweenU(x, t) andy(t), therefore we can
use the constructed auxiliary low dimensional system
y(t) to find UPTSTs by means of SD–method.
Having constructed the auxiliary flow system (3) we

can use SD-method to detect UPOs in it and UPSTSs
in the initial spatial extended chaotic system (1), re-
spectively. InR

3 space a planeρ(x = 0.25, t) = 1.0
has been selected as Poincaré secant. Let us denote
the vectorsy(tn) = (1, ρ(0.5, tn), ρ(0.75, tn))T cor-
responding to then-th crossing the selected secant sur-
face by the trajectoryy(t) asyn. Then the description
of the system dynamics can be made with the help of
the discrete map

yn+1 = G(yn), (5)

whereG(·) is the evolution operator. Obviously, it is
impossible to find the analytical form for the operator
G, but numerical integration of the initial system of
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Figure 1. The spatio-temporal dynamics of the charge density

ρ(x, t) of the electron beam of Pierce diode. The oscillations for

the selected control parameter valueα = 2.858π are chaotic both

in space and time

partial differential equations (1) can give us a sequence
of values{y}n, generated by the map (5).
SD–method for picking out UPOs in the map (5) sup-

poses consideration of the following map (Pingelet
al., 2001):

yn+1 = yn + λC [G(yn) − yn] , (6)

whereλ = 0.1 is the method constant andC is a cer-
tain matrix of the setCk. Each of matricesCk should
have only one non-vanishing entry+1 or −1 in row
and column, i.e., they are orthogonal.
In works (Schmelcher and Diakonos, 1997; Pingelet

al., 2001) it was shown that map (6) under the appropri-
ate choice of the matrixC allows to stabilize effectively
the unstable saddle periodical orbits of systems (5) and
(3). A trajectory of transformed system (6) starting in
the domain of attraction of a stabilized fixed point con-
verges to it. Therefore, the UPOs of a chaotic dynam-
ical system (5) can be obtained by iterating the trans-
formed systems (6) using a robust set of initial condi-
tions. In our calculation the matrix

C =

(

1 0
0 1

)

(7)

is suitable to find UPOs in (5).
The transformed system (6) allows to find only the un-

stable periodic orbits of length1. To consider UPOs of
lengthp the map

yn+1 = yn + λC [Gp(yn) − yn] , (8)

should be considered instead of (6) whereG(p)(·) is p-
times iterated map (5). As far as the spatial extended
system and the auxiliary flow system are considered,
only thep-th crossing of the Poincaré secant by the tra-
jectoryy(t) should be taken into account.
So, by numerical iteration of the map (8) with differ-

ent values ofp one can find the set of the unstable peri-
odic spatio-temporal states of the extended system (1).
However, there is a problem concerning with search-
ing the stateU(x, tn+1) at the momenttn+1 based on
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Figure 2. The dependence ofρn(x = 0.75) upon the number of

iteration of SD–method for the UPSTS of the length 1
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Figure 3. The distribution of space charge densityρ(x, t) corre-

sponding to the unstable spatio-temporal states with the following

lengthesp periodsT : (a) p = 1, T = 4.2; (b) p = 2,

T = 8.3; (c) p = 4, T = 18.9

the known vectoryn+1. Indeed, we know only the
coordinates of the statey(tn+1) in the Poincaré se-
cant but we don’t know the corresponding distribution
of ρ(x, tn+1), v(x, tn+1) andϕ(x, tn+1), and, corre-
spondingly, we do not know the stateU(x, tn+1) of
the extended system (1). However, as we have de-
termined above with the help of the nearest neigh-
bours method the statey(tn+1) in the Poincaré secant
uniquely defines the corresponding stateU(x, tn+1)
belonging to the attracting finite-dimensional subspace
W s of the infite-dimensional phase spaceW∞. To ob-
tain this spatial stateU(x, tn+1) mentioned above we
have used the following procedure. The system of par-
tial differential equations (1) is integrated (and vector
y(t) is calculated) untill some vectory(ts) is close to
the required oneyn+1 with some demanded precision:
||yn+1 − y(s)|| < 10−3. When this condition is satis-
fied, the stateU(x, ts) corresponding to the found vec-
tor y(s) are considered as the required oneU(x, tn+1)
and then the next iteration according to (8) should be
done.
The spatio-temporal chaotic dynamics of the charge

densityρ(x, t) in the Pierce diode is shown in Fig. 1
for α = 2.858π. Applying the modified SD-method al-
lows to find the demanded periodical time-space states.
The convergence of the iteration procedure (8) is illus-
trated by Fig. 2, which shows the dependence of the
space charge densityρn(x = 0.75) in the moments of
time when the trajectoryy(t) in R

3 space crosses the
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Figure 4. The spatio-temporal dynamics of the Ginzburg-Landau

equation. The evolution of|u(x, t)| is shown for the system length

(a) L = 12.63 and (b) L = 13.25

Poincaré secant upon the number of iterationn of the
SD–method when the UPSTS of the lengthp = 1 is
studied. One can see clearly that the iteration process
of SD–method converges to the value corresponding
to the unstable time-periodical spatio-temporal state of
the system. Fig. 3 shows the distributionρ(x, t) cor-
responding to the USTSs with different periodsT de-
tected by means of SD-method.

3 Detection of UPSTS in CGLE
To show the universality of the proposed approach we

also report the results of detecting the UPSTSs for the
one-dimensional complex Ginzburg-Landau equation
(CGLE) (Aranson and Kramer, 2002). The CGLE is
a fundamental model for the pattern formation and tur-
bulence description.
We have considered one-dimensional CGLE

∂u

∂t
= u − (1 − iα)|u|2u + (1 + iβ)

∂2u

∂x2
(9)

with periodical boundary conditionsu(L, t) = u(0, t).
All calculations were performed for a fixed system pa-
rametersα = β = 4 and random initial conditions.
The system lengthL has been chosen as the control

parameter. In our study we examined two values of the
control parameter:L1 = 12.63 andL2 = 13.25. For
both these valuesL CGLE demonstrates the spatiotem-
poral chaotic regime. The corresponding dynamics of
CGLE are shown in Fig. 4 for the lengthsL = 12.63
andL = 13.25. One can see easily that the second
case is characterized by more complex irregular spatio-
temporal chaotic dynamics. Indeed, in the first case
(L = 12.63) the chaotic dynamics is characterized by
only one positive Lyapunov exponentΛ1 = 0.04, while
the second chaotic regime (L = 13.25) is characterized
by two positive Lyapunov exponentsΛ1 = 0.10 and
Λ2 = 0.07.
Applying the modified SD-method to the spatial ex-

tended CGLE we can find the demanded unstable pe-
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Figure 5. The evolution of the module|u(x, t)| corresponding to

the UPSTSs with the following lengthsp and periodsT : (a) p = 1,

T = 12.1; (b) p = 2, T = 18.1 for L = 12.63. The

dimension of the vectory(t) has been chosen asm = 3.
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Figure 6. The evolution of|u(x, t)| corresponding to UPSTSs

with (a) p = 1, T = 4.95 and (b) p = 3, T = 20.2 for

L = 13.25. The dimension of the auxiliary vectory(t) has been

chosen asm = 4

riodical spatio-temporal states as well as for the fluid
model of Pierce diode. We have constructed the vector
(3) of the auxiliary low dimensional system as

y(t) = (u(x1, t), . . . , u(xm, t))T , (10)

wherem is the dimension of the auxiliary system vec-
tor,xi = iL/m, i = 1, m.
In contrast to the fluid model of Pierce diode the di-

mensionm of the auxiliary vectory(t) is unknown for
CGLE. Therefore, we have to try to find UPSTSs by
means of the SD-method (8) for the different values
of the dimensionm starting from the minimal dimen-
sion valuem = 3. If the required UPSTS is not found
for the selected value of the auxiliary vector dimension
m∗, the SD-method procedure should be repeated for
the greater dimension valuem = m∗ + 1.
For the system lengthL = 12.63 the dimension of the

auxiliary systemm = 3 is found to be adequate for the
correct UPSTSs detection. As it was mentioned above
the system behavior is characterized by one positive
Lyapunov exponent. For the more complicated case
L = 13.25 (when the behavior of CGLE is character-
ized by two positive Lyapunov exponents) the dimen-
sion of the auxiliary vector should be taken asm = 4
for UPSTSs to be detected successfully.
Fig. 5 shows the evolution of the profiles|u(x, t)|

corresponding to the unstable periodic spatio-temporal
states with the different periodsT detected by means of
SD-method for the system lengthL = 12.63, when the
dimension of the auxiliary vector (10) has been cho-
sen asn = 3. The analogous evolution of the profiles
|u(x, t)| corresponding to the unstable periodic spatio-
temporal states with the different lengthsp and periods
T is shown in Fig. 6 forL = 13.25 andm = 4.



4 Conclusion
We have proposed the method of the detection of the

UPSTSs of spatial extended chaotic systems being the
extension of the well known SD-method. The effective-
ness of this method is illustrated by the consideration of
the fluid model of Pierce diode and CGLE.
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