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Abstract al., 1999). Therefore, one of the important prob-

The method of detection of the unstable periodic lem connected with the study of the spatial extended
spatio-temporal states of spatial extended chaotic sys-chaotic system is finding these UPSTSs. It is appropri-
tems has been proposed. The application of this ate to suggest that the methods aimed at the search of
method is illustrated by the consideration of two differ- UPOs of the dynamical systems with small dimension
ent systems: (i) the fluid model of Pierce diode being of phase space may be adapted to the spatial extended
one of the fundamental system of the physics of plas- systems. The method proposed by D.P.Lathrop and
mas and (ii) the complex one-dimensional Ginzburg- E.J. Kostelich (Lathrop and Kostelich, 1989), as an ex-
Landau equation demonstrating different regimes of ample, had been used to pick out UPSTSs for the fluid
spatio-temporal chaos. model of Pierce diode (Rempen and Hramov, 2004).

This method is based on the obtaining the histograms
describing the frequency of system returning to the

Key words vicinity of UPOs (in the low-dimensional systems) or

spatial extended chaotic systems, unstable orbits UPSTSs (in the spatial extended systems), respectively.

Nevertheless, this method applied to spatial extended
systems is rather imprecise and time-consuming.

1 Introduction In this report we describe the modification of

It is well known that the unstable periodic orbits the method of P.Schmelcher and F.Diakonos (SD-
(UPOs) embedded into chaotic attractors play an im- method) (Schmelcher and Diakonos, 1997; Pingel
portantrole in the dynamics of the systems with a small al., 2001) allowing precise detection of UPSTSs in
number of the degree of freedom (Cvitanovic, 1988). the spatial extended chaotic systems (Hramov and
The chaotic regime of the system may be character- Koronovskii, 2007). As the sample analyzed spa-
ized by means of the set of UPOs (Carroll, 1999). A tially extended chaotic systems we consider here the
universal and powerful tool for exploration of chaotic one-dimensional complex Ginzburg-Landau equation
dynamics (Cvitanovi¢, 1991), UPOs proved to be es- (CGLE) and the fluid model of Pierce diode.
pecially efficient in context of chaotic synchroniza-
tion (Pikovskyet al., 1997; Pikovsky et al., 199%;

Hramovet al., 2005) and the problem of the chaos con- 2 Detection of UPSTS of chaotic dynamics in the
trolling (Ott et al., 1990). In the last case UPOs may Pierce diode

be stabilized by means of the week influence on the As the primary system under study we have used the
system dynamics by the small variation of the control fluid model of Pierce diode (Godfrey, 1987; Hramov
parameter (Otét al., 1990) or with the delay feedback and Rempen, 2004) being one of the simplest beam-
(Pyragas, 1992). plasma systems demonstrating chaotic dynamics. It

In the spatial extended systems the unstable periodicconsists of two plane infinite grids pierced by the elec-
spatio-temporal states (UPSTSSs) exist (Francesehini tron beam. The grids are grounded and the distance be-
al., 1999) which are similar to the UPOs in the chaotic tween them id.. The entrance space charge dengity
systems with a small number of the degree of free- and velocityvy are maintained constant. The space be-
dom. In particular, the chaotic dynamics of spatial ex- tween the grids is evenly filled by the neutralizing ions
tended systems may be controlled by stabilizing such with density|p;/po| = 1. The dynamics of this system
unstable periodic spatio-temporal states (Boccadetti  is defined by the only parameter, the so-called Pierce



parametery = w,L/vg, Wherew, is the plasma fre-  pose the use of the variables taken from several points
quency. Witha > 7 Pierce instability develops, which  z; of the extended system space to construct the finite
leads to the appearance of the virtual cathode. At thedimensional system

same time, withhv ~ 37, the instability is limited by
non-linearity and the regime of complete passing of the
electron beam through the diode space can be observed.
In this case the system can be described by the partial
differential equations: where m is the dimension of the auxiliary system,
x; =i1L/(m+1), ¢ = 1,m. In comparison with the
other known methods (for example, Galerkin method),

Y(t) = (p(xlvt)a'"ap(xm’t))T’ )

ov  Ov _ dp 9p _ O(vp) 0%

— ==, =— s Ay = a?(p-1), such approach allows us to undergo easily from the
ot 0z Oz Ot 0z ° Oz (1)  spatial extended system stalé(z,t) to the low-
with the boundary conditions: dimensional vectoy (¢) without any additional calcu-
lations.
. . (1) = For the system under study (1) we have estimated
v(0:) =1, p(0:8) =1, ¢(0,) =(1,t) =0. the dimension of the auxiliary vectgr(t) asm = 3.

| . 1~(2) th di ional ('Z)bl This assumption is based on the results of the consid-
n equations (1)~(2) the non-dimensional variables eration of the finite-dimensional model of the Pierce

(space charge potential densityp, velocity v, space  yinqe dynamics obtained with the help of Galerkin
coordinatex and timet) are used (see, for example, method (Hramov and Rempen, 2004)
(Hramov and Rempen, 2004; Filatewal., 2006)). To confirm meeting of the requirements of the one-

One of the core prpblems re_lated to _the spatial €X" to-one correspondence between sthtér, t) of the
tended“system con&degtlon is the infinite dimension spatial extended system and vecid) of the con-

of the “phase spaceW™. As a consequence, the structed auxiliary system with the small number of de-
sFateU(g_:,t) of the system of stugy ShPUId be con- gree of freedom we have used the neighbour method
sidered instead of vectat(t) in R™ as in the case  pecorqet a1, 1995). We have examined that the dis-
of the flow systems. For the s%/s_tem (1) this state tanced(y1,y2) = |[y1 — yo|| between two vectors
Ulz,t) = (v(z,1), p(z, 1), 0(2,1))" is the vector of " y(t1) andy, = y(t2) taken in the arbitrary mo-
the functlons_ char_ac_:terlzmg the system dynamics. Af- ments of timet, andt, is close to zero if and only if
ter the transient finished the set of the staifs, t) the distances(U,, Us) between two different states

_m?y. be dc_onsidfaredl flshattracting;&bs?ﬁfé of th.el U(z,t;) andU(z, t2) of the spatial extended system
Infinite—dimensional "phase spac of the spatia taken in the same moments of timeg andt, is also

extended s.ysFe.m under. s_tudy: If thg dimension of this small. The distancé(U;, Us) has been defined as
subspace is finite, the finite-dimensional sp&&e of

variables may be used to describe the dynamics of the
spatial extended system. 1 , \Y?

In is well-known that SD-method was developed to S(U1,Uz) = (/0 U1 (z,) = Ua(z, )] dx) ’
the UPOs detection in the systems with discrete time, 4)
although it may be also applied to the flow sys- where|| - || is Euclidian norm. According to the neigh-
tems (Pingeét al., 2001) by means of reducingthemto  bour method it means that there is the one-to-one corre-
maps with the help of Poincaré secant. In order to ap- spondence betwedri(z, t) andy(t), therefore we can
ply the SD method to an extended system, we assumeuse the constructed auxiliary low dimensional system
that its infinite-dimensional phase space possesses the () to find UPTSTs by means of SD—method.
low-dimensional attracting invariant subspate, and Having constructed the auxiliary flow system (3) we
the desired solution lies in this subspace. Further, we can use SD-method to detect UPOs in it and UPSTSs
construct the auxiliary system(t) in which the vector  in the initial spatial extended chaotic system (1), re-
field y is in one-to-one correspondence Withr. spectively. InR? space a plang(z = 0.25,¢) = 1.0

The stationary state&/”(z,t) = U%(x) of the spa-  has been selected as Poincaré secant. Let us denote
tial extended system correspond to the fixed points in the vectorsy(t,,) = (1, p(0.5,,), p(0.75,t,))" cor-
the phase space of the auxiliary system, while the pe-responding to the-th crossing the selected secant sur-
riodic spatio-temporal states of (1) are in one-to-one face by the trajectory(t) asy,. Then the description
correspondence with the periodic orbits of the finite- of the system dynamics can be made with the help of
dimensional systeng(t). Therefore, UPSTSs of spa- the discrete map
tial extended system may be found by means of the
detection of UPOs of the auxiliary finite-dimensional
system. Ynt+1 = G(yn)v (5)
There are many well-known methods for applying

low-dimensional variable space to describe the behav-whereG(:) is the evolution operator. Obviously, it is
ior of the spatial extended system, among which a typi- impossible to find the analytical form for the operator
cal one is the mode expansion method. Therein we pro-G, but numerical integration of the initial system of
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Figure 1. The spatio-temporal dynamics of the charge densit Figure 2. The dependence of,(z = 0.75) upon the number of
p(x,t) of the electron beam of Pierce diode. The oscillations for iteration of SD—method for the UPSTS of the length 1

the selected control parameter vatue= 2.8587 are chaotic both
in space and time

partial differential equations (1) can give us a sequenq(x’t)

of values{y}, , generated by the map (5). ,

SD-method for picking out UPOs in the map (5) sup=-
poses consideration of the following map (Pingel
al., 2001):

Ynt1 =¥n + AC [G(Yn) - Yn] , (6)

where) = 0.1 is the method constant ar@ is a cer-
tain matrix of the seC,. Each of matrice€’;, should Figure 3. The distribution of space charge dengify, t) corre-
have only one non-vanishing entryl or —1 in row sponding to the unstable spatio-temporal states with thewing
and column, i.e., they are orthogonal. lengthesp periodsT: @ p = 1, T = 4.2; byp = 2,
In works (Schmelcher and Diakonos, 1997; Pingel T =8.3;(C)p=4,T =18.9
al., 2001) it was shown that map (6) under the appropri-
ate choice of the matrigC allows to stabilize effectively
the unstable saddle periodical orbits of systems (5) and
(3). A trajectory of transformed system (6) starting in
the domain of attraction of a stabilized fixed point con-
verges to it. Therefore, the UPOs of a chaotic dynam-
ical system (5) can be obtained by iterating the trans-
formed systems (6) using a robust set of initial condi-
tions. In our calculation the matrix

the known vectoty,, 1. Indeed, we know only the
coordinates of the statg(¢,+1) in the Poincaré se-
cant but we don’t know the corresponding distribution
of p(z,tny1), v(z, tht1) ande(z, t,41), and, corre-
spondingly, we do not know the staté(z, ¢,+1) of
the extended system (1). However, as we have de-
termined above with the help of the nearest neigh-
bours method the stage(t,,+1) in the Poincaré secant
C— (1 0) @ uniquely defines the corresponding staféz, t, 1)
01 belonging to the attracting finite-dimensional subspace
W# of the infite-dimensional phase spdé&©. To ob-

is suitable to find UPOs in (5). tain this spatial stat&J(z, ¢,41) mentioned above we

The transformed system (6) allows to find only the un- have used the following procedure. The system of par-

stable periodic orbits of length To consider UPOs of tial differential equations (1) is integrated (and vector
lengthp the map y(t) is calculated) untill some vectgr(¢;) is close to

the required ong,,; with some demanded precision:
[lyn+1 — y¥(s)]| < 1073, When this condition is satis-

Yn+1 = ¥Yn +AC[GP(yn) =yl (8) fied, the statdJ(z, t,) corresponding to the found vec-
tory(s) are considered as the required dhér, t,,11)
should be considered instead of (6) Where) (-) is p- and then the next iteration according to (8) should be

times iterated map (5). As far as the spatial extendeddone.
system and the auxiliary flow system are considered, The spatio-temporal chaotic dynamics of the charge
only thep-th crossing of the Poincaré secant by the tra- densityp(x,t) in the Pierce diode is shown in Fig. 1
jectoryy(t¢) should be taken into account. for a = 2.8587. Applying the modified SD-method al-
So, by numerical iteration of the map (8) with differ- lows to find the demanded periodical time-space states.
ent values op one can find the set of the unstable peri- The convergence of the iteration procedure (8) is illus-
odic spatio-temporal states of the extended system (1).trated by Fig. 2, which shows the dependence of the
However, there is a problem concerning with search- space charge densipy,(z = 0.75) in the moments of
ing the statU(z, t,,.1) at the moment,,; based on  time when the trajectory(t) in R3 space crosses the
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Figure 5. The evolution of the modules(z, ¢)| corresponding to
the UPSTSs with the following lengthsand periodd: (&) p = 1,
T =121, )p = 2,T = 181for L = 12.63. The
dimension of the vectay (t) has been chosen as = 3.
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Figure 4. The spatio-temporal dynamics of the Ginzburgelzan °
equation. The evolution dfu(x, t)] is shown for the system length
@ 1L =12.63and b) L = 13.25

. , . ) Figure 6. The evolution ofu(x,t)| corresponding to UPSTSs
Poincaré secant upon the number of iteratioaf the wih @p = 1T = 4.95and ) p = 3, T — 20.2 for

SD__methOd when the UPSTS of the I.en@ﬂ.t Lis L = 13.25. The dimension of the auxiliary vectyr(¢) has been

studied. One can see clearly that the iteration process -
.~ “chosenasn = 4

of SD—method converges to the value corresponding

to the unstable time-periodical spatio-temporal state of

the system. Fig. 3 shows the distributip(w, ¢) cor-  riodical spatio-temporal states as well as for the fluid
responding to the USTSs with different peridtisle-  model of Pierce diode. We have constructed the vector
tected by means of SD-method. (3) of the auxiliary low dimensional system as

3 Detection of UPSTS in CGLE y(t) = (u(zy,t), ..., u(zm, )", (10)

To show the universality of the proposed approach we
also report the results of detecting the UPSTSs for the wherem is the dimension of the aux”iary system vec-
one-dimensional complex Ginzburg-Landau equation tor, z; = iL /m, i = T, m.
(CGLE) (Aranson and Kramer, 2002). The CGLE is |n contrast to the fluid model of Pierce diode the di-
a fundamental model for the pattern formation and tur- mensionn of the auxiliary vectow (t) is unknown for

bulence description. CGLE. Therefore, we have to try to find UPSTSs by
We have considered one-dimensional CGLE means of the SD-method (8) for the different values
, of the dimensionn starting from the minimal dimen-
ou : 2 07U sion valuem = 3. If the required UPSTS is not found
E (1= dajful*u+ (1 + oz O forthe selected value of the auxiliary vector dimension
m*, the SD-method procedure should be repeated for
with periodical boundary conditions(L, t) = (0, t). the greater dimension value = m* + 1.
All calculations were performed for a fixed system pa- For the system length = 12.63 the dimension of the
rametersy = 8 = 4 and random initial conditions. auxiliary systemm = 3 is found to be adequate for the

The system lengtii. has been chosen as the control correct UPSTSs detection. As it was mentioned above
parameter. In our study we examined two values of the the system behavior is characterized by one positive
control parameterZ; = 12.63 and L, = 13.25. For Lyapunov exponent. For the more complicated case
both these values CGLE demonstrates the spatiotem- L = 13.25 (when the behavior of CGLE is character-
poral chaotic regime. The corresponding dynamics of ized by two positive Lyapunov exponents) the dimen-
CGLE are shown in Fig. 4 for the lengtlis= 12.63 sion of the auxiliary vector should be takenras= 4
and L = 13.25. One can see easily that the second for UPSTSs to be detected successfully.
case is characterized by more complex irregular spatio- Fig. 5 shows the evolution of the profilés(z,t)|
temporal chaotic dynamics. Indeed, in the first case corresponding to the unstable periodic spatio-temporal
(L = 12.63) the chaotic dynamics is characterized by states with the different periodsdetected by means of
only one positive Lyapunov exponett = 0.04, while SD-method for the system length= 12.63, when the
the second chaotic regimé & 13.25) is characterized  dimension of the auxiliary vector (10) has been cho-
by two positive Lyapunov exponents; = 0.10 and sen as» = 3. The analogous evolution of the profiles
Ay =0.07. |u(z, t)| corresponding to the unstable periodic spatio-

Applying the modified SD-method to the spatial ex- temporal states with the different lengfhand periods
tended CGLE we can find the demanded unstable pe-T' is shown in Fig. 6 forl, = 13.25 andm = 4.



4 Conclusion M. Zaks and J. Kurths (19%9J. Attractor—repeller
We have proposed the method of the detection of the collision and eyelet intermittency at the transition to

UPSTSs of spatial extended chaotic systems being the phase synchronizatioRhys. Rev. Lett. 79(1), 47-50.

extension of the well known SD-method. The effective- Pikovsky, A. S., M. Zaks, M. G. Rosenblum, G. V. Os-

ness of this method is illustrated by the consideration of ipov and J. Kurths (199). Phase synchronization of
the fluid model of Pierce diode and CGLE. chaotic oscillators in terms of periodic orbitShaos
7(4), 680-687.
Cvitanovi¢, P. (1991). Periodic orbits as the skeleton of
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