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Abstract
Theory of intermittency taking place in bistable dy-

namical systems subjected to additional noise influence
have been proposed. The main characteristic of in-
termittency namely the residence time distribution for
both coexisting regimes has been obtained analytically
and numerically. The proposed theory has been applied
to bistable energy model and erbium-doped fiber laser
with two coexisting periodic orbits.
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1 Introduction
Intermittency is an ubiquitous phenomenon in non-

linear science [Berge et al., 1984]. It is observed in
different systems including the physical, physiologi-
cal and biological ones (see, e.g., [Kim et al., 1998;
Perez Velazquez and et al., 1999; Kiss and Hudson,
2001; Boccaletti et al., 2002; Cabrera and Milton,
2002; Hramov et al., 2006b; Sitnikova et al., 2012]).
It manifests itself as alternation of the episodes of pe-
riodic and chaotic regimes [Manneville and Pomeau,
1979] or different forms of the chaotic motion [Grebogi
et al., 1987]. It can also be observed near the bound-
aries of the different synchronous regimes demonstrat-
ing the interchange of the phases of synchronous and
asynchronous behavior (see, e.g. [Pikovsky et al., 1997;
Boccaletti and Valladares, 2000; Hramov and Ko-
ronovskii, 2005; Hramov et al., 2006a; Moskalenko
et al., 2011; Hramov et al., 2014]).
Several types of the intermittent behavior are tra-

ditionally distinguished, among which there are type

I-III [Berge et al., 1984; Dubois et al., 1983], on-
off [Heagy et al., 1994], eyelet [Pikovsky et al., 1997;
Boccaletti et al., 2002] and ring [Hramov et al., 2006a]
intermittencies or their common coexistence [Hramov
et al., 2013; Moskalenko et al., 2014; Koronovskii
et al., 2016]. Each of types of intermittency mentioned
above is characterized by its mechanism and its own
statistical characteristics. One can say that such char-
acteristics allows to unambiguously define the type of
intermittency realized in the system.
Recently the concept of intermittency has been ex-

tended to multistable systems. In such case the alter-
nation between coexisting periodic or chaotic regimes
regardless of the form of motion realized in the systems
can also be observed [Pisarchik et al., 2012; Sevilla-
Escoboza et al., 2015]. At that, the switches between
coexisting regimes can be induced by noise. There-
fore, the system under study demonstrates the so-called
noise-induced intermittency or noise-induced attractor
hopping [Arecchi et al., 1985; Wiesenfeld and Hadley,
1989; Kraut and Feudel, 2002; Pisarchik et al., 2011;
Hramov et al., 2016].
Despite of a great interest to the problem of noise-

induced intermittency (see, e.g. [Lai and Grebogi,
1995; Pisarchik and Pinto-Robledo, 2002; Hramov
et al., 2016]) there is a number of questions demand-
ing consideration and discussion. One of such prob-
lems consists in the fact that there is no appropriate
theory allowing to obtain the characteristics of noised-
induced intermittency even in the case of two differ-
ent regime coexistence. In the present paper the the-
ory of noise-induced intermittency in bistable dynam-
ical systems would be proposed. As would be shown
bellow, the residence time distributions for every coex-
isting regime should obey the exponential law.



2 Theory of noised-induced intermittency
The standard bistable system capable to demonstrate

noised-induced intermittency is bistable energy model

dx

dt
= −dU(x)

dx
+ ξ(t), (1)

where ξ(t) is zero mean δ-correlated Gaussian noise
[⟨ξn⟩ = 0, ⟨ξnξm⟩ = Dδ(n−m)], D is its variance,

U(x) =
x4

4
− x2

2
+ bx (2)

is the dimensionless energy function with two local
minima, b is the parameter of symmetry [Pisarchik
et al., 2014; Moreno-Bote et al., 2007].
The differential equation (1) with stochastic term ξ(t)

results in the stochastic differential equation

dX =
dU(x)

dx
dt+ dW, (3)

(where X(t) is a stochastic process, W (t) is a one-
dimensional Winner process) which is equivalent to the
Fokker-Plank equation

∂ρX(x, t)

∂t
=

∂

∂x
[
dU(x)

dx
ρX(x, t)] +

D

2

∂2ρX(x, t)

∂x2

(4)
written for probability density ρ(x, t) of the stochastic
process X(t).
Since in the regime of intermittency the coordinate of

the system state stays for a long time in the vicinity of
the one local minimum one can assume that the solu-
tion of the equation (4) should be found in the form of
the metastable distribution decaying slowly for a long
period of time, i.e.

ρ(x, t) = A(t)r(x), (5)

(where r(x) is the stationary probability density ob-
tained from the solution of equation (4) in stationary
case, A(t) is a coefficient decreasing slowly with the
time increases) which results in the following relation
for the residence time distributions for both coexisting
regimes

p1,2(t) =
1

T1,2
exp (− t

T1,2
). (6)

where

T1,2 =
P1,2

kr(x∗)
, (7)

x∗ is a boundary point being located on the equal dis-
tances from the local minima of U(x), P1,2 are the
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Figure 1. Residence time distributions for two coexisting regimes
in bistable energy model (1) for b = 0 . The results of numeri-
cal calculations are marked by points. Theoretical approximations
by the regularity (6) are shown by solid lines. The parameters of
approximations are the following: (a) T1 = 722, (b) T2 = 721

probabilities of location of the representation point in
the vicinity of the first or second local minimum, k is a
normalization factor.
In other words, in the regime of noise-induced inter-

mittency the residence time distributions should obey
the exponential law (6).

3 Numerical verifications of the proposed theory
To confirm the results of theoretical predictions we an-

alyze numerically the behavior of two different systems
capable to demonstrate the regime of noise-induced in-
termittency. As the first example we consider the same
energy model (1) with the same potential function (2)
and characteristics of noise with its variance D = 0.1.
In Fig. 1 the statistical distributions of the residence
times corresponding to two coexisting regimes in sym-
metrical case (b = 0) are shown. Fig. 1,a corresponds
to the first coexisting regime (the first local minimum
of the potential function), Fig. 1,b refers to the second
one. The results of numerical simulation are marked
by points for both coexisting regimes, their theoreti-
cal approximations by the exponential laws (6) with the
parameters indicated in the caption are shown by solid
lines. It is clearly seen the excellent agreement between
the results of numerical calculations and theoretical ap-
proximations that testifies the validity of the proposed
theory.
As the second example we consider the dynam-

ics of the erbium-doped fiber laser which is known
to demonstrate the noised-induced intermittency [Pis-
archik et al., 2005; Hramov et al., 2016]. The system
under study is given by

dx

dt
=

2L

Tr
x {rwα0 [y (ξ1 − ξ2)− 1]− αth}+ Psp,(8)

dy

dt
= −σ12rwx

πr20
(yξ1 − 1)− x

τ
+ Ppump,

where x is the intracavity laser power,

y =
1

n0L

L∫
0

N2(z)dz is the averaged (over the



active fiber length L) population of the upper las-
ing level, N2 is the upper level population at the
z coordinate, n0 is the refractive index of a “cold”
erbium-doped fiber core, ξ1 and ξ2 are parameters
defined by the relationship between cross sections
of ground state absorption (σ12), return stimulated
transition (σ21), and exited state absorption (σ23). Tr

is the photon intracavity round-trip time, α0 is the
small-signal absorption of the erbium fiber at the laser
wavelength, αth accounts for the intracavity losses on
the threshold, τ is the lifetime of erbium ions in the
excited state, r0 is the fiber core radius, w0 is the radius
of the fundamental fiber mode, and rw is the factor
that conveys the match between the laser fundamental
mode and erbium-doped core volumes inside the active
fiber. The spontaneous emission into the fundamental
laser mode is derived as

Psp = y
10−3

τTr

(
λg

w0

)2
r20α0L

4π2σ12
, (9)

where λg is the laser wavelength. The pump power is
expressed as

Ppump = Pp
1− exp [−α0βL (1− y)]

N0πr20L
, (10)

where Pp is the pump power at the fiber entrance and
β is a dimensionless coefficient. In analogous with the
previous works the control parameter values have been
selected as follows: L = 0.88 m, Tr = 8.7 ns, rw =
0.308, α0 = 40 m−1, ξ1 = 2, ξ2 = 0.4, αth = 3.92 ×
10−2, σ12 = 2.3 × 10−17 m2, r0 = 2.7 × 10−6 m,
τ = 10−2 s, λg = 1.65×10−6 m, w0 = 3.5×10−6 m,
β = 0.5, and N0 = 5.4×1025 m−3, that correspond to
the real experimental conditions.
Under the harmonic and random modulations

Pp = p [1−md sin (2πfdt) + ηG(ζ, fn)] , (11)

(where p is the pump power, md = 0.95 and fd =
80 kHz are the driving frequency and amplitude, re-
spectively, η is the noise amplitude and G(ζ, fn) is
the zero-mean noise function of a random number
ζ ∈ [−1, 1] and noise low-pass cut-off frequency
fn = 30 kHz) the system (8) demonstrates the
noised-induced intermittency with up to four coexisting
regimes Ai (i = 1, 3, 4, 5) with frequencies fi = fd/i
being observed [Pisarchik et al., 2012; Hramov et al.,
2016].
If the noise intensity η is small enough the system (8)

demonstrated the coexistence of two different regimes
that allows us to apply the theory proposed in Section 2
to the system under study. In Fig. 2 the numerically ob-
tained distributions of the residence times correspond-
ing to the regimes A1 and A3 for the value of the noise
intensity η = 0.11 and their theoretical approximations
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Figure 2. Residence time distributions for two coexisting regimes
(a — A1, b — A3) in erbium-doped fiber laser (8) for the noise
intensity η = 0.11 (points) and their analytical approximations by
the regularity (6) (solid lines). The parameters of approximations are
the following: (a) T1 = 3.1× 10−4, (b) T2 = 3.9× 10−4

by the regularities (6) are presented. It is clearly seen a
good agreement between the theoretically and numeri-
cally obtained results for both considered regimes. So,
one can conclude that for small value of the noise in-
tensity the residence time distributions corresponding
to two coexisting regimes in erbium-doped fiber laser
obey the exponential law.

4 Conclusion
In the present paper the theory of noise-induced inter-

mittency in bistable dynamical systems has been pro-
posed. We have shown that the residence time distribu-
tions for every coexisting regime obey the exponential
law. The main results have been illustrated using the
examples of bistable energy model and erbium-doped
fiber laser.
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