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Instituto Potosino de Investigación Cientı́fica
y Tecnológica A.C.
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Abstract
Piecewise linear systems based on unstable dissipa-

tive systems (UDS) inR3 consist of one of the two
possible conditions regarding their eigenvalues. The
UDS of the type I, present aλ1 real negative eigen-
value and twoλ2,3 complex conjugated values with real
positive parts. Since the trajectories formed by these
systems are unbounded due to their stability, two or
more subsystems need to be considered in order to re-
strain the resulting orbit generating self-sustained os-
cillations. To do so, here the intrinsic properties of the
systems along with the location in space in which the
equilibrium is located are described, in order to design
switching control laws that bound the resulting trajec-
tories.
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1 Introduction
Theories and applications regarding Piecewise Linear

(“PWL”) systems have been widely used, ranging from
vibrational analysis, dry-friction oscillators to voltage-
stepping neural networks and abruptly changes in
chemical process [Yu, 2013; Natsiavas, 1998; Zheng,
Tonnelier and Martinez, 2009; Christophersen, 2007].
In the last decades, new interesting areas of application
regarding multi-scroll chaotic systems have come to
light. For example in the process of masking informa-
tion in chaotic communications through transmission
channels [Gámez-Guzmánet. al., 2009], in the encryp-
tion of fingerprint images [Hanet. al., 2007] and cellu-
lar neural networks [Yalçın, 2007; Yalçın, Suykens and
Vandewalle, 2005].
The tendency on generating and designing systems

that result in multiple scrolls by the interaction of PWL
systems, has opened many fields by means of different

methods and technics, for example nonsmooth nonlin-
ear functions, such as hysteresis [Lüet.al., 2004; Deng
and Lü, 2007], saturation [Lü, Guanrong Chen and Yu,
2004; Sánchez-Lópezet. al., 2010], threshold and step
functions [Lüet. al., 2008; Yalçinet. al., 2002; Yu
et. al., 2005; Campos-Cantónet. al., 2008; Campos-
Cantónet. al., 2010].
In [Ontañón-Garcı́aet. al., 2014] and in the same

spirit of [Campos-Cantónet. al., 2008; Campos-
Cantón et. al., 2010; Campos-Cantón, Femat and
Guanrong Chen, 2012], a unified method to design sys-
tems using the Unstable Dissipative Systems (UDS)
theory with a family of hyperchaotic attractors was pro-
posed. The idea is to consider the properties of the
saddle-focus equilibria PWL systems dividing them in
two UDS categories, regarding on the eigenvalues that
their linear part presents. Due to the intrinsic unstable
dynamics that these systems present they are incapable
of generating bounded attractors. Therefore, in order
to generate bounded trajectories, at least two identical
affine subsystems with combined unstable one-spiral
trajectories located in the space are required to contain
the trajectory. The approach only considered the case
of the displacement of the equilibria along thex axis.
However, the location can be designed towards any re-
gion of space.
In this work, different displacements along different

axes in space will be considered in order to reaffirm
the UDS theory described in [Ontañón-Garcı́aet. al.,
2014]. The article is presented as follows: Section 2
contains all the definitions and considerations of the
UDS theory. In Section 3 a method for generating UDS
of the type I equilibria along the axes is presented. In
Section 4 the method is extended to the space. And
finally conclusions are drawn in the last Section.

2 Unstable dissipative system theory
Consider the class of affine linear system given by the

following equation:



ẋ = Ax+B, (1)

wherex = [x1, x2, x3]
T ∈ R

3 represents the state vec-
tor, B = [b1, b2, b3]

T ∈ R
3 stands for a real vector,

A = [aij ] ∈ R
3×3 with i, j = 1, 2, 3, is a linear non-

singular matrix which determines the dynamics of the
system and catalogs the system on its UDS type. The
matrix A has to present a stable manifoldEs and an
unstable oneEu. Two types of unstable dissipative sys-
tems exist, however only the type I will be considered
here. This type is defined in the following way:

Definition 2.1. It is said that the system (1) is of the
UDS type I if

∑

3

i=1
λi < 0, where λi, i = 1, 2, 3,

are the eigenvalues of the matrix A, and one λ1 is
real negative (Re{λ1} < 0 and Im{λ1} = 0), and
two λ2,3 are complex conjugated with positive real part
(Re{λ2,3} > 0 and Im{λ2,3} 6= 0).

Notice that systems with these particular character-
istics present equilibrium of the saddle-focus type at
x
∗ = −A

−1
B and any initial conditionx0 ∈ R

3

will be affected by its dynamics. Therefore if a sys-
tem with ordered eigenvalues according to their real
partλ1 ≤ λ2 ≤ λ3 satisfies Definition 2.1, then it has a
stable eigendirection given byEs = span{v1} ⊂ R

3,
wherev1 = [v1x1

, v1x2
, v1x3

] ∈ R
3 is the corresponding

eigenvector of the negative real part of the real eigen-
valueλ1. This stable manifold is represented by the
following space linear equation:

x1 − αx1

v1x1

=
x2 − αx2

v1x2

=
x3 − αx3

v1x3

(2)

whereαx1
, αx2

, αx3
∈ R are the coordinates of the

corresponding equilibriumx∗. Any trajectory with ini-
tial condition inEs will be attracted towards the equi-
librium. On the other hand, an unstable spiral eigendi-
rection given byEu = span{v2,v3} ⊂ R

3, in conse-
quence of the real positive part of the complex conju-
gated, wherevj = [vjx1

, vjx2
, vjx3

] ∈ C
3 are the corre-

sponding eigenvectors of the complex conjugate eigen-
valuesλj with j = 2, 3. This manifold can be repre-
sented by a characteristic plane obtained from the real
and complex conjugate values of the eigenvectors in the
following way:

ϕ = [ϕx1
, ϕx2

, ϕx3
] = Re{vj} × Imag{vj}; (3)

where× corresponds to the cross product of the eigen-
vectors, therefore, the plane equation of the unstable
manifold will be given as:

ϕx1
(x1−αx1

)+ϕx2
(x2−αx2

)+ϕx3
(x3−αx3

) = 0.
(4)

Any trajectory with initial condition in the unstable
plane manifold, will be driven in spirals away from the
equilibrium on the plane.
A system given by Eq. (1) under Definition 2.1, can-

not produce bounded oscillations autonomously due to
its instability. To attend this matter it is required to
design a commuted system dividing the space at least
in the domains of two subsystems in order to trap the
trajectory. This commuted system takes the following
form:

ẋ = Ax+B(x),

B(x) =

{

B1, if x ∈ D1;
B2, if x ∈ D2;

(5)

whereB1,2 ∈ R
3 and the domainsD1,2 are such that

R
3 = D1 ∪ D2. Thus, the equilibrium of the sys-

tem given by Eq. (5) result inx∗

i = −A
−1

Bi, with
i = 1, 2. Therefore,Bi vectors correspond to each
subsystem, which together ensure bounded trajectories
and the stability of a class of switched dynamical sys-
tems inR3. The idea is the following: After any initial
condition inside the basin of attraction is given, and
assuming that it is in the domainD1 for a subsystem
given by(A,B1), the evolution of the system due to
its instability will tend to take the trajectory to infin-
ity. Later, when the trajectory crosses from its initial
domain inD1 to the adjacent oneD2, the subsystem
given by(A,B2) will trapped the trajectory for some
time until the process is inverted and repeated continu-
ously, resulting in a bounded trajectory. The challenge
here lies in the location of the equilibria in space, since
the trajectory once it begins to grow spinning along the
unstable manifold, at the moment of crossing the com-
mutation surface must match the stable manifold direc-
tion in order to be trapped and bounded.

3 Displacement of the equilibria along the axis of
UDS type I

In order to describe the displacement of the equilib-
ria along the axes, their position with respect tox

∗

i =
−A

−1
Bi with i = 1, 2 will be considered defining the

commuting values ofB(x). The resulting displaced
equilibria will take the form:

x
∗ =





αx1

αx2

αx3



 ; (6)

with αx1
, αx2

, αx3
corresponding to the distance from

the origin to thex1, x2 andx3 axes, respectively. Thus,



if a specific position in space is desired, the following
equation needs to be solved:

B(x) = −Ax
∗. (7)

Consider first the case of a displacement along thex1

axis as described next.

3.1 Displacement along thex1 axis
A displacement in thex1 axis can be easily imple-

mented considering a matrixA that satisfies Definition
2.1. Based on the well known case of the jerky equation
in R

3, here, the matrixA takes the following form:

A =





0 1 0
0 0 1
−2 −1 −1



 . (8)

The characteristic polynomial of matrixA given by
(8) takes the formλ3 + λ2 + λ+ 2 and by calculating
its roots, the set of eigenvalues of the system results
in Λ = {−1.3532, 0.1766± 1.2028i}, which satisfies
Definition 2.1 and ensures that the system is of the UDS
type I. The eigenvectors of the system result inv

1 =
[−0.4021, 0.5441,−0.7363]T andv

2,3 = [0.4433 ±
0.1331i,−0.0818 ± 0.5571i,−0.6845]T, generating
stable and unstable manifolds, respectively, and re-
quired to yield bounded trajectories as a consequence
of the stretching and folding behavior. Now, in order to
determine the displacement of the equilibria alongx1,
consider thatx∗ takes the following form:

x
∗ =





αx1

0
0



 . (9)

Therefore by solving (7) the affine vectorB(x) will
be defined as follows:

B(x) =





0
0

2αx1



 . (10)

Now considering a displacement ofαx1
= 1/2, a

commutation law must be defined for eachDi in order
to trap the unstable trajectory with at least two subsys-
tems. This can be fulfilled given the following commu-
tation law:

B(x) =

{

B1 = [0, 0, 1]T , if x1 ≥ 0;
B2 = [0, 0,−1]T otherwise.

(11)

The equilibria of the system (5) with matrixA and the
vectorBi defined in (11) result in:x∗

1
= [1/2, 0, 0]T

andx∗

2
= [−1/2, 0, 0]T .

With this commutation law, the system results in a
2 scroll attractor which oscillates around the two dis-
placed equilibrium points (see Figure 1). The space
linear equations ofEs of the equilibriax∗

1
andx∗

2
re-

sult in the following:

x1 ± 1/2

−0.4021
=

x2

0.5441
=

x3

−0.7363
; (12)

and the planes ofEu of the equilibriax∗

1
andx∗

2
result

in:

0.3813(x1 ± 1/2)− 0.0911x2 + 0.2578x3 = 0. (13)

In order to understand more the dynamics of the sys-
tem, the stable and unstable manifoldsEs andEu, are
plotted along with the projection of the attractor onto
the(x1, x2) and(x1, x3) planes in Figures 1a) and Fig-
ure 1b), respectively. The initial condition considered
for the system isx0 = [1, 0, 0]T . Notice that the num-
ber of equilibrium points equals the number of scrolls
in the attractor and similarly, the direction in which
the orbits are oscillating around the equilibria matches
the unstable plane of the manifoldEu, which is rep-
resented with a blue line in the corresponding projec-
tion of the attractor. However, the trajectory once it
grows and crosses the commutation surface in the plane
x1 = 0, is forced towards the equilibria affected by the
stable manifoldEs, marked with a red line in Figure
1. The dynamic of the system, in order to be trapped,
must force the trajectory to escape from one domain
D1 through the unstable planeEu. At the moment it
crosses the commutation surface, the trajectory must
be attracted throughEs in D2 in such a way that the
trajectory doesn’t escapes to infinity. The process must
be reversed in the same way but in opposite direction at
the moment of return.
If one considers the proper matrixA and vectorB(x)

the displacement can be obtained along different axes.
For example in thex2 axis as commented next.

3.2 Displacement along thex2 axis
In order to generate a displacement alongx2, consider

first a matrix that satisfies Definition 2.1. For example
the one described below:

A =





−2 1 3
5 −5 −5
−1 −2.8 −1



 . (14)

Therefore, the resulting eigenvalue set isΛ =
{−8.3004, 0.1502± 1.8631i}, which ensures that the
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Figure 1. Projection of the attractor of the system(5)with A from

(8), B(x) from (11) onto the: a)(x1, x2) plane; (x1, x3)
plane. Marked with a red line the stable manifoldEs given by(12)
and with a blue line a section of the unstable plane manifoldEu

given by(13).

system is of the UDS type I. The eigenvectors arev
1 =

[−0.2903, 0.9061, 0.3077]T and v
2,3 = [0.3565 ∓

0.4407i,−0.3994∓0.2834i, 0.6624]T . In order to gen-
erate a displacement along the corresponding axis, con-
sider that the equilibria takes the form:

x
∗ =





0
αx2

0



 , (15)

and by solving (7) it will result in the following affine
vector:

B(x) =





−1αx2

5αx2

2.8αx2



 ; (16)

if a displacementαx2
= 2 is considered, the following

commutation law will be defined:

B(x) =

{

B1 = [−2, 10, 5.6]T , if x2 ≥ 0;
B2 = [2,−10,−5.6]T otherwise.

(17)
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Figure 2. Projection of the attractor of the system(5)with A from

(14), B(x) from (17) onto the: a)(x1, x2) plane; (x2, x3)
plane. Marked with a red line the stable manifoldEs given by(18)
and with a blue line a section of the unstable plane manifoldEu

given by(19).

The equilibria of the system (5) with matrixA and the
vectorB defined by the commutation law given by (17)
are: x∗

1
= [0, 2, 0]T andx∗

2
= [0,−2, 0]T . The space

linear equations ofEs of the equilibriax∗

1
andx∗

2
result

in the following:

x1

−0.2903
=

x2 ± 2

0.9061
=

x3

0.3077
; (18)

and the plane ofEu of the equilibriax∗

1
andx∗

2
result

in:

−0.1877x1 + 0.2919(x2 ± 2) + 0.2771x3 = 0. (19)

This can be appreciated in more detail from the pro-
jection of the attractor of the system onto the(x1, x2)
and (x2, x3) planes, given in Figure 2a) and 2b), re-
spectively. In this case the displacement occurs only in
the desiredx2 axis and the system solution results also
in a two scroll attractor. Similar characteristics as the
x1 case result from their eigenvectors and the direction
in which the trajectories travels in space.

3.3 Displacement along thex3 axis
Consequently, consider a displacement alongx3. The

matrixA will take the form described below:



A =





−1 −1 −1.5
1 0 1
0 1 0



 . (20)

Therefore, the resulting eigenvalue set isΛ =
{−1.2972, 0.1486 ± 0.6028i}, which ensures that
the system is of the UDS type I. The eigenvec-
tors v

1 = [−0.3847, 0.7310,−0.5636]T andv
2,3 =

[−0.7545, 0.0376 ± 0.3441i, 0.5527 ± 0.0738i]T . In
order to generate a displacement along the correspond-
ing axis, consider that the equilibria take the form:

x
∗ =





0
0

αx3



 , (21)

and by solving (7) it will result in the following affine
vector:

B(x) =





1.5αx3

−1αx3

0



 ; (22)

considering a displacement ofαx3
= 10, then a com-

mutation law that bounds the trajectory will be given as
follows:

B(x) =

{

B1 = [15,−10, 0]T , if x3 ≥ 0;
B2 = [−15, 10, 0]T , otherwise.

(23)

The equilibria of the system (5) with matrixA and
the vectorB considering the commutation law given
by (23) are:x∗

1
= [0, 0, 10]T andx∗

2
= [0, 0,−10]T .

The space linear equations ofEs of the equilibriax∗

1

andx∗

2
result in the following:

x1

−0.3847
=

x2

0.7310
=

x3 ± 10

−0.5636
; (24)

and the planes ofEu of the equilibriax∗

1
andx∗

2
result

in:

−0.1874x1+0.0559x2− 0.2596(x3± 10) = 0. (25)

This can be appreciated in more detail from the pro-
jection of the attractor of the system onto the(x1, x3)
and (x2, x3) planes, given in Figure 3a) and 3b), re-
spectively. Here, the displacement is in thex3 axis and
the number of scrolls also matches the equilibria.
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Figure 3. Projection of the attractor of the system(5)with A from

(20), B(x) from (23) onto the: a)(x1, x3) plane; (x2, x3)
plane. Marked with a red line the stable manifoldEs given by(24)
and with a blue line a section of the unstable plane manifoldEu

given by(25).

4 Displacement along the space
Following the same technique described above the

displacement can be considered not only through the
axes, but also in any region of the space. For example,
in order to locate the equilibria in symmetric positions
among the space, take the example of the matrix given
in Eq. (14). The equilibria will result in the following
position:

x
∗ =





αx1

αx2

αx3



 . (26)

By solving the Eq. (7), the following affine vector will
result:

B(x) =





2αx1
− 1αx2

− 3αx3

−5αx1
+ 5αx2

+ 5αx3

αx1
+ 2.8αx2

+ αx3



 . (27)

For the sake of simplicity, the displacement values
will be set asαx1

= αx2
= αx3

= 1. The commu-
tation surface will be considered along thex1+x2 = 0
plane, taking the following form:



B(x) =

{

B1 = [−2, 5, 4.8]T , if x1 + x2 ≥ 0;
B1 = [2,−5,−4.8]T , otherwise.

(28)
By doing so, the equilibria of the system (5) with ma-

trix A from Eq. (14) and the vectorB defined in the
commutation law given by (28) are:x∗

1
= [1, 1, 1]T and

x
∗

2
= [−1,−1,−1]T . In this case, the space linear

equations ofEs of the equilibriax∗

1
andx∗

2
result in

the following:

x1 ± 1

−0.2903
=

x2 ± 1

0.9061
=

x3 ± 1

0.3077
; (29)

and the planes ofEu of the equilibriax∗

1
andx∗

2
result

in:

−0.1877(x1±1)+0.2919(x2±1)+0.2771(x3±1) = 0.
(30)

This is depicted in the projection of the attractor of the
system onto the(x1, x2), (x1, x3) and(x2, x3) planes,
given in Figure 4a), 4b) and 4c), respectively.

5 Conclusion
PWL systems that results in multi-scroll attractors

have been implemented in several applications, and
now a days, the possibility of generating trajectories
that oscillate according to a pre-designed commuted
system widens the possibilities of generating more
complex trajectories. Considering the theory of attrac-
tors based on UDS, in which linear unstable system
with specific eigenvalues are located along the space in
order to trap the unstable trajectories. Here, a method
to displace the equilibria not only among thex1 axis,
but in any region of space was presented. The idea is
to present a matrix that satisfies the Definition 2.1 of
UDS type I. Their eigenvectors must force the trajec-
tory to oscillate along the equilibria whose desired po-
sition can be specified, and then adjust the affine vec-
tor by solving the linear system. One of the simple
cases of forming an attractor comes from commutation
laws that result in symmetric equilibria. An important
feature of this type of systems, is that for every equi-
librium of the UDS type I introduced, among with a
corresponding commutation law, the number of scrolls
presented in the attractor match the number of equi-
libria. Application of this theory can be extended to
encryption and secure communication methods. The
results can be reported elsewhere.
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