
BOUNDED ADAPTIVE STABILIZATION

Ilya V. Burkov

Department of Higher Mathematics, St. Petersburg State Polytechnical University
Polytechnicheskaya 29, St. Petersburg 195251, Russia.

e-mail: ilyaburkov@hotmail.com

Abstract: The control is designed from the condition of decreasing Lyapunov func-
tion on the trajectories of the closed loop system. This control may be chosen a
priori bounded. As example we consider the rotational system with nonlinear dissi-
pative force and disturbances which periodically depends on the angle. We consider
also the problem of evaluating unknown external periodic torque of this rotational
system. The second example is adaptive stabilization of the uniform transition of
the pendulum on a cart.
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1. GENERAL SCHEME

Consider the following system

ẋ = f(x) + g(x)(u + h(x)θ) (1)

where x ∈ Rn is state vector, u ∈ Rm is vector of
control, θ ∈ Rl is vector of constant unknown pa-
rameters, the matrix h(x) is known and bounded
regressor. Suppose that there exists bounded glob-
ally stabilizing control u = U0(x) for the system
ẋ = f(x) + g(x)u and corresponding Lyapunov
function V (x). For globally stabilizing bounded
control of eq. (1) the input u = U0(x)− h(x)F (θ̂)
and differential equation of adaptation

dθ̂/dt = diag{γi

(
∂Fi

∂θ̂i

)−1

}h�(x)
∂V

∂x
g(x)

where the functions Fi(τ) are continuous, strictly
increasing and θi belongs the range of Fi, γi > 0
are proposed. This adaptive scheme was synthe-
sized by using Lyapunov function

Va = V +
n∑
1

(Fi(θ̂i) − θi)2

2γi

The novelty of our approach in comparison with
Parks, 1966 and Fradkov e.a., 1999 is in second
term of Lyapunov function Va. This modification
allows to synthesize a priori bounded control.

The proposed general scheme gives the solution of
bounded stabilization of two specific systems: 1)
combined alternator-starter 2) pendulum and cart

2. ADAPTIVE STABILIZATION
WITH DISTURBANCE ESTIMATION

Consider the following system

Jω̇ + K(ω) = u + Te, ϕ̇ = ω (2)

where u is the control input, J > 0 is a moment
of inertia, K(ω) is a dissipative force, ϕ is the
angle of device, and Te is the external periodic
disturbance

Te(ϕ) = T0 +
N∑

i=1

[ai cos(iϕ) + bi sin(iϕ)] (3)

Here T0 is a constant component of torque, N
is a number of harmonics we account for. As-
sume that K(ω) is a continuous strictly increas-
ing function vanishing at the origin. Typically
K(ω) = kvω+sign(ω)cxω2/2, where kv is a coeffi-
cient of viscous damping and cx is an aerodinam-
ical coefficient. The problem arises in mechanical
systems with eccentrity, in particular, in drives
with magnetic bearings and gear boxes (Canudas
and Praly, 2000). The goal of the controller is to
track given speed reference ωd = const

lim
t→∞ω = ωd. (4)



and reject periodic disturbance Te(t).

Let us discuss in more details the motivation from
engine control. The periodic fuel combustion pro-
cesses and nonlinear engine geometry result in en-
gine crankshaft speed oscillations. Usually a pas-
sive flywheel is used for reducing the pulsation of
crankshaft speed. There exists an idea of using a
reversible alternator for engine speed damping to
improve vehicle driveline performance. Another
potentiality of proposed system is active engine
idle speed regulation.

The using of the supplemental torque source for
control improvement of the engine idle speed and
reducing of crankshaft speed pulsations have been
investigated actively in recent years (Gusev e.a.,1996;
Zaremba e.a., 1998; Burkov, 2001).

The dynamic model of the active flywheel system
can be represented in the state-space form by eq.
(2) and engine torque Te which has the following
form (Rizzoni, 1989)

Te(ϕ) = T0 +
N∑

i=1

[ai cos(miϕ) + bi sin(miϕ)] (5)

Here T0 is a dc component of engine torque, and m
is a number of strokes (firings) during one crankshaft
rotation (m = 2 for a four-stroke cycle four cylin-
der engine). The signal ωd(t) can be a given en-
gine speed (e.g., engine idle speed) . Consider
the problem of idle speed regulation together with
crankshaft speed pulsation attenuation.

In most previous work concerning periodic distur-
bances the authors considered the periodic distur-
bance as periodic function of time (Bodson e.a.,
1994). But in many cases the assumption of de-
pendance of Te on angle is more realistic. In present
paper we develop and generalize the results of
Zaremba e.a.,1998; Burkov, 2001.

The model (2) describes also controlled rotation
of a pendulum or a disbalanced horizontal rotor.

The following adaptive control is proposed

u = −Φ(ω − ωd)−
N∑

i=1

[Fai(âi) cos(iϕ)+Fbi(b̂i) sin(iϕ)]−Fa0(â0) (6)

dâ0

dt
= α0(F ′

a0
)−1(ω − ωd),

dâi

dt
= αi(F ′

ai
)−1 cos(iϕ)(ω − ωd), (7)

db̂i

dt
= βi(F ′

bi
)−1 sin(iϕ)(ω − ωd)

i = 1, . . . , N

where the functions Fai , Fbi are differentiable and
strictly increasing, the function Φ is continuous
strictly increasing and vanishing at the zero, αi, βi

are constant positive gain coefficients. Assume
that real values ai, i = 1, ..., N belong to the
ranges of functions Fai , bi belongs to the ranges
of Fbi and T0−K(ωd) belongs to the range of Fa0 .
Note, that if these functions are chosen bounded
(f.e., arctan) then the control u will be bounded.
The differential equations (7) have to be solved
during the process of regulation. The closed-loop
system may be represent as

J
ω̃

dt
+ K(ω) − K(ωd) =

−Φ(ω−ωd)−
N∑

i=1

[ãi cos(iϕ)+ b̃i sin(iϕ)]− ã0 (8)

where ω̃ = ω−ωd, ã0 = Fa0(â0)+K(ωd)−T0, ãi =
Fai(âi) − ai, b̃i = Fbi(b̂i) − bi, i = 1, ..., N

Proposition. For constant desired motion ωd

the closed-loop system (2),(3),(6),(7) is globally
asymptotically stable with respect to ω̃ = ω −
ωd, α̃i, β̃.

Proof. Consider the following Lyapunov function

V =
1
2
[Jω̃2 + ã2

0/α0 +
N∑

i=1

(ã2
i /αi + b̃2

i /βi)] (9)

Differentiating along the trajectories of the closed-
loop system and substituting equations (2),(3),(6),(7)
results in the following formula

V̇ = −ω̃[Φ(ω̃) + K(ω) − K(ωd)]

According to the Rumyantsev-Oziraner theorem
(see paragraph 19 of their book let us analyze the
closed-loop system under the condition V̇ = 0. As
ω → ωd then ϕ → ωdt + ϕ0. So there exist angles
ϕ1, ..., ϕ2N+1 which are inequal in pairs. The con-
dition ω̃ = 0 implies that the following equation
holds

0 =
N∑

i=1

[ãi cos(iϕ) + b̃i sin(iϕ)] + ã0 (10)

From the theory of trigonometric polynoms we get
ãi = 0, b̃i = 0. The Lyapunov function V is not ra-
dially unbounded, nevertheless the surfaces of its
levels are unbounded, so the attraction is global.

Modelling. In Fig. 1,2,3 there are the graphs of
the angular velocity ω(t), and the compensation
terms Fb2(b̂2), Fa0(â0) for the following parame-
ters J = 1, kx = 0.5, cx = 0, T0 = 1.2, ωd = 2 b1 =
0, b2 = 1, a1 = 0, a2 = 0 Φ = Fa0 = Fb2 = arctan,
and initial data ϕ(0) = 0, ω(0) = 1.5, â0(0) =
3, b̂2(0) = 1.3.



ESTIMATION WITHOUT CONTROL

Let u = 0. In this section assume that each tra-
jectory of uncontrolled system is nontrivial in the
folowing sense: the angle ϕ become equal to ϕ1, ..., ϕ2N+1

which are inequal in pairs. Consider the following
equations of estimation

Jdω̌/dt + K(ω̌) =

Ť0 +
N∑

i=1

[ǎi cos(iϕ) + b̌i sin(iϕ)] (11)

where ω̌ is the estimate of the angular velocity

dŤ0/dt = α0(ω − ω̂),

dǎi/dt = αi cos(iϕ)(ω − ω̂), (12)

db̌i/dt = βi sin(iϕ)(ω − ω̌)

i = 1, . . . , N

and ǎi, b̌i, Ť0 are estimates of Fourier coefficients
in (2).

Proposition. In the closed loop system (2),(3),
(11),(12) the estimates ω̌, Ť0, ǎi, b̌i globally con-
verge to its real values when time tends to infinity.

Proof. The closed-loop system may be repre-
sented as

Jdω̄/dt + K(ω̌) − K(ω) =

N∑
i=1

[āi cos(iϕ) + b̄i sin(iϕ)] + T̄0

where ω̄ = ω̌ − ω, āi = ǎi − ai, b̄i = b̌i − bi, T̄0 =
Ť0 − T0

Consider the following Lyapunov function

Ve =
1
2
[J(ω̌ − ω)2 + T̄ 2

0 /α0+

N∑
i=1

(ā2
i /αi + b̄2

i /βi)]

Differentiating along the trajectories of the closed-
loop system and substituting equations (7),(6),
(11),(12) results in the following formula

V̇e = −(ω̌ − ω)[K(ω̌) − K(ω)]

According to Rumyantsev-Oziraner theorem the
trajectories converge to the set V̇e = 0 which is
trivial one. This fact may be demonstrated simi-
larly to the proof of first theorem.

PENDULUM ON CART

The planar pendulum on a cart is well-known phys-
ical device (see, f.e., Mazenc and Bowong, 2003 ).

Its dynamics obtained by Lagrange formulation
are

(M + m)v̇ + ml cos(θ − γ)ω̇ − ml sin(θ − γ)ω2+

g sin γ(M + m) = f, ż = v,

(13)

cos(θ − γ)v̇ + lω̇ + g sin θ = 0, θ̇ = ω

where (M, z) are mass and position of the cart
moving along a strait line, which has an angle γ
with horizontal line, (m, l, θ) are mass, length and
angular deviation from the downward vertical po-
sition for the pendulum which is pivoting around
a point fixed on the cart, f is a control force act-
ing on the cart, g is a gravitational constant, see
Fig.4. The system has the kinetic energy

K =
1
2
(M + m)v2 + mlvω cos(θ − γ) +

1
2
ml2ω2

the potential energy

Π = Πz + Πθ,

with Πz = Mgz sin γ+mgz sin γ, Πθ = −gml cos θ
and the kinetic moment

J = (M + m)v + mlω cos(θ − γ)

The pendulum on the cart is a simple model for
overhead crane moving the load ( d’Andrea-Novel
and Coron, 2000; Burkov, 2005 ). If the angle
γ = π/2 than our model describes lifting a load
by the rope of a crane.

Let v = vd, θ = 0, ω = 0 be the desired motion,
the value G = g sin γ(M + m) in unknown .

By means of the Lyapunov function mentioned in
sect. 1 we obtain the stabilizing control

f = Fa(Ĝ) − Fv(v − vd) (14)

dĜ/dt = −ν(
∂Fa

∂Ĝ
)−1(v − vd)

where Ĝ is tuning variable, ν > 0 and the func-
tions Fa, Fv have the same properties as the func-
tion F from sect. 1.

Proposition . The closed loop system (13), (14)
is asymptotically stable with respect to the vari-
ables v − vd, θ, ω, Fa(Ĝ) − G.
Proof. Consider Lyapunov function

V = K + Πθ − vdJ +
1
2ν

(Fa(Ĝ) − G)

and investigate the set of trajectories under the
condition V̇ = 0.
Modelling. In Fig. 5,6,7 there are the graphs of
the velocity v(t), the angle θ(t) and the compen-
sation term Fa(Ĝ) for the following parameters



M = m = l = g = vd = 1, Fa(τ) = 3 arctan τ,
Fv = arctan, γ = π/2 and initial data z(0) =
0, v(0) = 1.5, θ(0) = 1.3, ω(0) = 0, Ĝ(0) = 3.

CONCLUSION

Our generalization of speed gradient adaptive con-
trol (Fradkov e.a., 1999) allows to design apriori
bounded stabilization input. Some questions are
open in considered problems; for example, robust-
ness of stabilization with respect to noise in mea-
surements and external deterministic or stochastic
disturbances. It is necessary to investigate the do-
main of attractions. This is the theme for future
research.
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Figure 1: Angular velocity ω
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Figure 2: Compensation term Fb2(b̂)
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Figure 3: Compensation term Fa0(â)

Figure 4: Cart and pendulum
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Figure 5: Velocity v(t)
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Figure 6: Angle θ(t)
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Figure 7: Compensation term Fa(Ĝ)


