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1. INTRODUCTION

Iterative Learning Control (ILC) is a relatively
new addition to the toolbox of control algorithms.
ILC is concerned with the performance of systems
that operate in a repetitive manner. Such sys-
tems include robot arm manipulators and chem-
ical batch processes, where the task of following
some speci�ed output trajectory r(t) in an interval
t ∈ [0, N ] with high precision is repeated time
and time again. The use of conventional control
algorithms with such systems will result in the
same level of tracking error being repeated time
and time again. Motivated by human learning,
the basic idea of ILC is to use information from
previous executions of the task in order to improve
performance from trial to trial in the sense that
the tracking error is sequentially reduced from
trial-to-trial. For further background on ILC see,
as two representatives of the very large litera-
ture (Arimoto et al., 1984) and/or (Moore, 1993).
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The concept of inverting plant dynamics to
achieve perfect tracking is a simple and obvious
one. However, it is hesitantly used in high pre-
cision tasks as uncertainty in plant models can
lead to sub-optimal tracking and potential sta-
bility issues. Inverse models also tend to amplify
measurement noise, which makes them even less
attractive in feedback control applications.

This paper produces new results on how inverse
models can be e�ectively used in the context
of ILC. In particular, the robustness and noise
rejection properties of an inverse model algorithm
are studied in both analysis and experiment. The
experimental work is based on a gantry robot
system and it is important to note that this is
by no means the �rst application of ILC see,
for example, (Norrlöf, 2002) � in fact the robot
system here is used to (begin the) experimental
bench marking of one algorithm and, in essence,
this is where the focus of this paper lies.



2. PROBLEM DEFINITION

As a starting point consider the following stan-
dard linear, time-invariant single input, single out-
put state-space representation de�ned over �nite
time interval, t ∈ [0, N ] (in order to shorten nota-
tion it is assumed that sampling time is unity):

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) (1)

where the state x(·) ∈ Rn, output y(·) ∈ R, input
u(·) ∈ R and x(0) = 0. The operators A,B and
C are matrices of appropriate dimensions. From
now on it will be assumed that CB > 0 and
that the system (1) is controllable and observable.
Furthermore, a reference signal r(t) is speci�ed
and the control objective is to �nd an input
function u(t) so that the output function y(t)
tracks the reference signal r(t) as accurately as
possible.

This repetitive nature of the problem opens up
possibilities for modifying iteratively the input
function u(t) so that as the number of repetitions
increases, the system learns the input function
that gives perfect tracking. In particular, the basic
novel feature is to construct a control law

uk+1 = f(uk, uk−1, . . . uk−r, ek+1, ek, . . . , ek−s)
(2)

so that

lim
k→∞

‖ek‖ = 0 lim
k→∞

‖uk − u∗‖ = 0 (3)

where uk = [uk(0) uk(1) . . . uk(N)]T , yk =
[yk(0) yk(1) . . . yk(N)]T , ek = [r(0)−yk(0) r(1)−
yk(1) . . . r(N) − yk(N)]T , and ‖ · ‖ is a suitable
norm. Note that if the mapping f in (2) is not a
function of ek+1, then it is typically said that the
algorithm is of feedforward type, otherwise it is of
feedback type.

For analysis purposes, note that because the sys-
tem (1) is de�ned over a �nite time-interval, it
can be represented equivalently with a matrix
equation yk = Geuk, where

Ge =


0 0 0 . . . 0

CB 0 0 . . . 0
CAB CB 0 . . . 0
...

...
...

. . .
...

CAN−1B CAN−2B . . . . . . 0

 (4)

where the elements CAjB of the matrix Ge are
the Markov parameters of the plant (1). It is
assumed here that the reference signal r(t) sat-
is�es r(0) = Cx0. Then it can be shown (see
[3]) that for analysis it is su�cient to consider
a �lifted� plant equation yk,l = Ge,luk,l where
uk,l = [uk(0) uk(1) . . . uk(N − 1)]T , yk,l =
[yk(1) yk(2) . . . yk(N)]T and

Ge,l =


CB 0 0 . . . 0

CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...

CAN−1B CAN−2B . . . . . . CB

 (5)

Note that because it was assumed that CB 6=
0, Ge,l is invertible, and consequently for an
arbitrary reference r there exists u∗ so that r =
Ge,lu

∗. Hence it would appear that this inverse
model algorithm can be regarded as theoretically
�perfect�. This, however, would require an exact
system model to be available and implemented
which is not a practically justi�ed assumption �
the best is that a nominal model is available or
chosen deliberately to reduce the computational
burden. Here this `lifted' plant will be used as a
starting point for analysis, and in order to shorten
notation, the subscript l will be omitted.

3. THE INVERSE MODEL ALGORITHM

There are many possible inverse plant ILC algo-
rithms and here as a representative we consider
the case when

uk+1 = uk + G−1
e ek (6)

Simple analysis of the corresponding error evo-
lution equation shows the expected result that
error converges to zero in one iteration which is
the perfect �solution�. This requires the �perfect�
model Ge and in practice it has to be replaced by
a nominal model denoted here by Go, i.e.

uk+1 = uk + G−1
o ek (7)

This yields the following error evolution equation:

ek+1 = (I −GeG
−1
o )ek (8)

The convergence characteristics of (8) depend
upon the matrix GeG

−1
o , a matrix which has

no guarantee of stability. A simple attempt to
introduce stability is to insert a scalar gain, β,
into the algorithm.

uk+1 = uk + βG−1
o ek (9)

and hence

ek+1 = (I − βGeG
−1
o )ek (10)

A necessary and su�cient condition for stability
is for the spectral radius of (I − βGeG

−1
o ) to

be less than 1 but satisfying this may still lead
to very poor performance of the algorithm. This
paper allows β to vary in such a manner that the
l2-norm of the error is monotonically decreasing
which is obviously a very useful property of an ILC
algorithm. More precisely, the update equation
and the error dynamics are determined by

uk+1 = uk + βk+1G
−1
o ek (11)



ek+1 = (I − βk+1GeG
−1
o )ek (12)

Norm Optimal Iterative Learning Control (NOILC)
(Amann et al., 1995) is one Optimal ILC rou-
tine that has been shown to give monotonic er-
ror convergence in spite of some model uncer-
tainties. NOILC minimizes both the error and
the change in input between trials by comput-
ing minuk+1∈RN J(uk+1) where the cost function
J(uk+1) is given (Arimoto et al., 1984) by

J(uk+1) = ‖ek+1‖2 + ‖uk+1 − uk‖2 (13)

where the l2-norm is used. This framework ex-
tends to the use of the adaptive update law (11)
by using

J(βk+1) = ‖ek+1‖2 + wβ2
k+1 (14)

where w can be freely chosen such that w >
0. This cost function adds �exibility whilst still
maintaining the NOILC ideal of minimizing error
and smoothing changes in input. For the case
Go = Ge a straightforward minimization of (14)
yields an optimal solution:

βk+1 =
‖ek‖2

w + ‖ek‖2
(15)

A convergence analysis of this algorithm for the
case Go = Ge is given next.

Proposition 1. If Go = Ge, w ∈ R, w > 0 then
‖ek+1‖ < ‖ek‖ if ek 6= 0. Furthermore,

lim
k→∞

‖ek‖ = 0 and lim
k→∞

βk+1 = 0 (16)

demonstrating monotonic convergence to zero
tracking error.

Proof. Selecting a sub-optimal choice βk+1 = 0 in
the cost function (14) yields J(0) = ‖ek‖2. Since
this choice is sub-optimal it follows:

‖ek‖2 > ‖ek+1‖2 + wβ2
k+1 > ‖ek+1‖2 (17)

demonstrating monotonic convergence. Reformu-
lation of (17) gives

‖ek‖2 − wβ2
k+1 > ‖ek+1‖2 > 0 (18)

and applying induction further gives

‖e0‖2 − w

k+1∑
i=1

β2
i > 0 (19)

and because k is arbitrary, limk→∞ βk = 0. This
results in

0 = lim
k→∞

βk+1 = lim
k→∞

‖ek‖2

w + ‖ek‖2
(20)

This is only possible if limk→∞ ek = 0. Fur-
thermore, the interlacing result (17) implies that
‖ek+1‖ < ‖ek‖ if ek 6= 0 which completes the proof
of Proposition 1. �

Remark 1. The choice of w = w1‖ek‖2 in (15)
where Go = Ge yields the error evolution equation
ek+1 = (1 − (1 + w1)−1)ek. Then for any w1 > 0
error convergence is geometric.

4. ROBUSTNESS OF THE INVERSE MODEL
ALGORITHM

Robustness of ILC algorithms is an active research
topic and space limitations preclude a summary
of the many approaches and their relative lim-
itaitons/merits. Here we undertake an analysis
of the algorithm of the previous section both in
terms of system stability and performance by re-
taining monotonic convergence in the presence of
model uncertainty. For this we need an uncer-
tainty representation and here we consider the
case when the true plant, Ge 6= Go, and the model
uncertainty of Go is taken to be a multiplicative
matrix U , i.e. Ge = GoU . The �rst result is as
follows.

Proposition 2. Suppose U + UT is a positive-
de�nite matrix. If ek 6= 0 there exists a βk+1 > 0
such that ‖ek+1‖2 − ‖ek‖2 < 0. Furthermore the
value of such βk+1 has to satisfy the following
inequality

vT (
1

βk+1
I−U)T (

1
βk+1

I−U)v <
1

β2
k+1

‖v‖2 (21)

where v ∈ RN is arbitrary.

Proof 1. Use of (9) yields

‖ek+1‖2−‖ek‖2 = −2βk+1e
T
k Uek+β2

k+1e
T
k UT Uek < 0

(22)
Since U + UT is assumed to be a positive-de�nite
matrix and βk+1 > 0, the terms −2βk+1e

T
k Uek

and β2
k+1e

T
k UT Uek are, for an arbitrary nonzero

ek, strictly positive and strictly negative respec-
tively. Then for ‖ek+1‖2 < ‖ek‖2 it is necessary
that the following inequality must be true.

2βk+1e
T
k Uek > β2

k+1e
T
k UT Uek (23)

Since the left hand term of inequality (23) is of
O(βk+1) and the right hand term is of O(β2

k+1) it
shows that the inequality is met for a su�ciently
small βk+1, giving monotonic convergence. Com-
pleting the square in (23) now gives (21).

Proposition 2 shows that if (21) holds true then
error convergence is monotonic. The next propo-
sition further shows that under this condition the
error converges to zero. The proof of this result
follows from that of Proposition 2 and hence the
details are omitted here.

Proposition 3. If the condition in Proposition 2
holds then limk→∞ ek = 0.

Remark 2. Note that it is easy to show that a
su�cient condition for U + UT to be a positive-
de�nite system is that the underlying system U(z)
corresponding to U is a positive-real system. The
phase shift of such a system lies within±90o for all



frequencies. Therefore the algorithm can tolerate
a plant uncertainty of ±90o phase shift for all
frequencies.

The next proposition shows how the use of the
adaptive βk+1 given in (15) can ensure that (21)
holds by taking w to be a su�ciently large positive
number.

Proposition 4. Assume U +UT is positive-de�nite
and w is su�ciently large. In this case a su�cient
condition for monotonic convergence is that

w > ‖e0‖2
( σmax(UT U)

σmin(U + UT )
− 1

)
(24)

where σmax(UT U) is largest eigenvalue of the
matrix U and σmin(U + UT ) is the smallest
eigenvalue of the matrix U + UT .

Proof 2. Substituting (15) into inequality (23)
with a couple of algebraic manipulations gives a
necessary and su�cient condition for monotonic
convergence

w >
‖ek‖2eT

k UT Uek

2eT
k Uek

− ‖ek‖2 (25)

Making the two estimates

σmax(UT U)‖ek‖2 > eT
k UT Uek (26)

and
σmin(U + UT )‖ek‖2 6 2eT

k Uek (27)

a the su�cient condition for convergence becomes

w > ‖ek‖2
( σmax(UT U)

σmin(U + UT )
− 1

)
(28)

Since the initial guess u0 results in a bounded
tracking error e0 then for any w such that inequal-
ity (28) holds, i.e. a w that ensures ‖e0‖ > ‖e1‖,
then inequality (28) will also hold for ek = e1.
Inductively condition (24) holds for an arbitrary
iteration k and therefore convergence is mono-
tonic.

Remark 3. Note that from (28) the su�cient
value of w decreases as ‖ek‖ decreases. Since an
excessively large w will give a small βk+1 implying
uk+1 ≈ uk then decreasing w with each itera-
tion will result in faster convergence. An obvious
method to exploit this without violating (28) is
to set w = w1‖ek‖2 where w1 is both su�ciently
large and constant from iteration to iteration.

As noted in the previous section, for the nominal
case Ge = Go the selection of w = w1‖ek‖2 in
fact gives geometric error convergence. The next
proposition extends this to the case where Ge has
positive multiplicative uncertainty.

Proposition 5. If U + UT is a positive-de�nite
matrix and ek 6= 0 then there exists a w such
that ‖ek+1‖ 6 α‖ek‖ where 0 6 α < 1.

Proof 3. The choice of w = w1‖ek‖2 yields the
following equation for ‖ek+1‖2

‖ek+1‖2 = ‖ek‖2 − γ2eT
k Uek + γ2eT

k UT Uek (29)

where γ = (1 + w1)−1. Note that since U +
UT is positive-de�nite then the second and third
right-hand terms in (29) are strictly negative and
strictly positive respectively for an arbitrary ek 6=
0. Using the estimates in (26) and (27) gives

‖ek+1‖2 6 α2‖ek‖2 (30)

where

α2 = 1− γσmin(U + UT ) + γ2σmax(UT U) (31)

Since the negative term −γσmin(U + UT ) is of
O(1+w1)−1 and the positive term γ2σmax(UT U)
is of O(1+w1)−2 then by using a su�ciently large
w1 > 0 it is ensured that 0 6 α < 1, giving
geometric convergence.

Remark 4. Note that if βk+1 is chosen to be as in
(15) then βk+1 will decrease with ‖ek‖ allowing
for a greater degree of positive uncertainty in Ge

to be tolerated. Therefore the better the initial
guess for input u0, the smaller ‖e0‖ becomes and
the more positive uncertainty the controller can
tolerate.

Remark 5. Choosing a very large w during the
early trials gives βk+1 ' 0. Clearly this choice
increases the robustness margin but at the same
time decreases convergence speed.

5. MEASUREMENT NOISE ANALYSIS

This section analyzes the e�ect of measurement
noise upon the performance of an inverse type ILC
algorithm. Random measurement noise obviously
prevents the error from reaching zero, although
reduction in error can be obtained when the error
to signal to noise ratio is high. The analysis in this
section shows that by decreasing a �xed learning
gain β, the limiting error of the system can be
expected to decrease. In order to initiate the
analysis, consider the control law

uk+1 = uk + βG−1
o (r − yk − nk) (32)

where 1 > β > 0, and the noise free tracking error

ek+1 = r −Gouk+1 (33)

where nk models the e�ect of measurement noise.
From now on it is assumed that the measurement
noise is zero-mean Gaussian white noise, and
satis�es the equation

E(nT
j nk+1) =

{
µ2, j = k + 1
0, j 6= k + 1 (34)



Proposition 6. Under the assumptions of perfect
plant model and Gaussian white (measurement)
noise the inverse algorithm satis�es

lim
k→∞

E(eT
k+1ek+1) =

βµ2

2− β
(35)

for an arbitrary initial condition e0.

Proof. Straightforward manipulations show that
the inverse algorithm (32) results in the following
error evolution equation under the presence of
measurement noise:

ek+1 = (1− β)ek + βnk (36)

Taking the inner product between (36) and ek+1

shows that the error evolution equation in terms
of squared norms is given by

‖ek+1‖2 = (1− β)2‖ek‖2 + 2(1− β)βeT
k nk

+β2‖nk‖2

(37)
Finally, because nk satis�es (34) and ek = r −
Geuk is a deterministic signal, taking the expected
value of ‖ek+1‖2 in (37) shows that equation (37)
can be simpli�ed to

E(‖ek+1‖2) = (1− β)2E(‖ek‖2) + β2µ2 (38)

It follows then that as the iteration k approaches
in�nity the limiting error becomes

lim
k→∞

E(eT
k+1ek+1) = lim

k→∞
(1− β)2kE(eT

0 e0)

+
∞∑

i=0

(
(1− β)2

)i
β2µ2

=
β2µ2

1− (1− β)2
=

βµ2

2− β

which completes the proof. �

Remark 6. Note that the value of the expectation
of the limiting l2 error is independent of e0 since
the control scheme has still iteratively learned to
reject this initial error. The result clearly shows
that as β approaches zero the expected error
converges to zero. Of course as β tends to zero, so
does convergence speed and this result highlights a
second trade-o� for inverse-type ILC: convergence
speed versus limiting error in the face of unknown
measurement noise.

In practical applications, however, the model is
never exactly known. Therefore the next proposi-
tion characterizes the expected value of the norm
of the limiting error under the presence of mul-
tiplicative uncertainty U , i.e. yk+1 = Geuk+1 =
UGouk+1 and uk+1 = uk + βG−1

o (ek − nk).

Proposition 7. Suppose that U +UT is a positive-
de�nite matrix and that β is su�ciently small. In
this case the limiting error satis�es the bound

sup lim
k→∞

E(‖ek+1‖2) 6
βm2

2µ
2

m2
1 − βm2

2

(39)

where m2
1 is the smallest eigenvalue of U +UT and

m2
2 is the largest eigenvalue of UT U .

Proof 4. Straightforward manipulations show that
the error evolution equation in the case of multi-
plicative uncertainty is given by

ek+1 = (I − βU)ek + βUnk (40)

and therefore

‖ek+1‖2 = eT
k (I − βU)T (I − βU)ek

+2eT
k β(I − βU)T Unk + β2nT

k UT Unk
(41)

Taking the expected value on this result shows
that

E(‖ek+1‖2) 6 (1− βm2
1 + β2m2

2)E(‖ek‖2)
+β2m2

2E(‖n2
k)

(42)
where m2

1 is the smallest eigenvalue of U + UT

and m2
2 is the largest eigenvalue of UT U . Taking

β su�ciently small guarantees that (1 − βm2
1 +

β2m2
2) < 1 and using a similar argument as in the

proof above shows that

sup lim
k→∞

E(‖ek+1‖2) 6
β2m2

2µ
2

1− (1− βm2
1 + β2m2

2)

=
m2

2µ
2β

m2
1 − βm2

2
(43)

which concludes the proof.

Remark 7. Even though this proposition is poten-
tially conservative, it still shows that by reducing
β it is possible to reduce the expectation of the
limiting error. This will initially lead to slower
convergence, demonstrating again the trade-o�
between convergence speed and limiting accuracy.
The analysis also demonstrates that if m2

2 (the
largest eigenvalue of UT U) is very large (for exam-
ple U(z) has a resonance), it will have a negative
e�ect on the limiting performance. Thus with res-
onant systems, problems with measurement noise
are more likely to occur than with non-resonant
systems.

Remark 8. Note the analysis in this section holds
only for a constant learning gain β. The adaptive
algorithm, however, automatically reduces β as
function of the iteration index k, and therefore
it is anticipated that the adaptive algorithm can
`automatically' produce a good balance between
convergence speed and asymptotic accuracy. Any
theoretical results in this direction will be re-
ported separately.

6. EXPERIMENTAL RESULTS

A multi-axis test facility has been constructed so
as to practically test ILC on a wide range of dy-
namic systems in an industrial-style application.
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Fig. 1. 3D reference trajectories

Currently, the apparatus consists of a three-axis
gantry robot supported above one end of a 6m
long industrial plastic chain conveyor. A descrip-
tion of the test facility can be found in (Ratcli�e
et al., 2004b). A 100Hz sample frequency was used
to calculate the inverse models for each axis. The
combined displacement reference trajectories for
each axis (Figure 1) produce a `pick and place'
action, designed to collect a payload from a dis-
penser, synchronies position and velocity with the
conveyor and place the payload on the conveyor.
The reference trajectories de�ne the iteration time
period as 2 seconds. With a 100Hz sample fre-
quency, this results in 200 sample instants per
iteration.

The inverse algorithm has been implemented with
a range of values for β, in order to experimen-
tally verify the algorithms performance. Space
limitations preclude a preclude a comprehensive
discussion of the results but the e�ect of β on
limiting performance in the presence of measure-
ment noise is included as an illustration. This has
been investigated by deliberately adding bounded,
zero-mean, pseudo-random noise to the axis dis-
placement signal recorded from the test facility by
optical incremental encoders. The noise is pseudo-
random, because it is generated by a seeded ran-
dom number generator. In these experiments, the
seed is the product of the sample number and
the iteration number. Therefore for di�erent it-
erations, the added noise appears to be random.
However, for di�erent tests, the same value of
noise is added for corresponding samples during
corresponding iterations.

Figure 2 displays the mean squared tracking error
(mse) on a logarithmic scale (in mm2) recorded
for each iteration, with learning gain β equal to
0.1, 0.2 and 0.3. The pseudo-random noise has
maximum bounds speci�ed as ±0.1mm. Similar
results were obtained for the Y and Z axes and
hence the plots have been omitted here. Previous
experimental work has shown that the inverse
algorithm is sensitive to the combination of mea-
surement noise and high-frequency non-linearities.
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Fig. 2. X-axis mse with β = 0.1, 0.2 and 0.3
(±0.1mm bounded noise)

The noise builds up in the iteration loop due to
high-frequency nonlinearities, rapidly corrupting
the plant input signal and causing much degraded
performance.

The �gures clearly demonstrate that convergence
speed is proportional to β whereas minimum mse
attained is inversely proportional to β, i.e. a trade-
o� is evident. This analysis is somewhat biased by
how many iterations the algorithm can perform
before the noise becomes su�ciently large to force
a system shutdown. Therefore it is necessary to
develop a test where the control system converges
to minimum error and remains stable.

Zero-phase �ltering has been shown to successfully
stabilize the inverse ILC algorithm considered
here in practical experiments (Ratcli�e et al.,
2004a). A discrete low-pass, 3rd order Chebychev
�lter, designed for a 100Hz sample frequency
and producing 20dB of attenuation at 15Hz is
implemented on the ILC generated plant input,
before the vector is supplied to the robot. The
�lter transfer function is represented by:

y(z)
u(z)

=
0.102693 + 0.002934z−1

1− 1.644597z−1
. . .

. . .
+0.002934z−2 + 0.102693z−3

+1.091881z−2 − 0.236029z−3
(44)

Figure 3 displays the X axis mse plots for β equal
to 0.2 and 0.8, when the added noise lies within
the bounds ±1mm. (The corresponding plots for
the Y and Z axes are similar and hence omit-
ted here.) A larger error bound can be tolerated
because the low pass �lter inherently attenuates
signals above the cut-o� frequency. Larger error
must be added if a component of the noise is to
pass through the �lter to interfere with the learn-
ing algorithm. The inverse algorithm stability has
been improved and the mse now reaches minimum
tracking error and maintains this level of error
consistently. Clearly, for the X axis the larger gain
of 0.8 produces a larger residual tracking error
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in the limit than the smaller gain of 0.2. But,
the larger gain still produces initial faster con-
vergence. For detailed experimental results on the
e�ect of modelling uncertainty on the algorithm
performance.

7. CONCLUSIONS

The use of inverse type ILC in the past has been
unpopular owing to the belief that it lacks ro-
bustness. This paper however, shows that if an
adaptive learning gain is added to the algorithm
the system will geometrically converge if the plant
multiplicative uncertainty satis�es a positivity
condition. The adaptive learning gain is selected
by the optimization of an objective function that
balances the reduction of the tracking error with
the size of the learning gain. As a new theoretical
result it has been shown that by decreasing the
learning gain it is possible to achieve satisfactory
tracking accuracy under the presence of measure-
ment noise. This new result has been validated
on an industrial-scale gantry robot system. Future
work will include an investigation into the e�ects
of measurement noise on the performance of the
adaptive inverse algorithm. Furthermore, design
rules for selecting the free parameters of the adap-
tive cost function are sought as a function of the
measurement noise variance.

The results here only deal with one class of in-
verse ILC algorithms. In other work, see, for ex-
ample, (Saab, 2001; Saab, 2003) ILC algorithms
(P-type or D-type) similar to the one considered
here are analyzed where the learning gain is also
tuned to decrease from iteration-to-iteration in
the presence of plant uncertainty, disturbance and
measurement noise. This work also extends to
more general classes of plant models but no results
have yet been reported on its experimental perfor-
mance. This area is also one to which pro�table
future research should be directed.
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