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Abstract
We say that a real polynomial is a Hurwitz polyno-

mial if all of its roots have negative real part. The im-
portance of the Hurwitz polynomials can be appreci-
ated in the study of stability of a linear systems: if the
characteristic polynomial is Hurwitz then the system is
stable. In this paper we explain the main criteria about
Hurwitz polynomials and we pose some open problems
about them.
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1 Introduction
Maxwell raised in 1868 the problem of deciding

if a polynomial has all its roots with negative real
part ([Maxwell, 1868]). Regardless Maxwell, the
Austrian engineer A. Stodola also raise the ques-
tion to A. Hurwitz. The problem is interesting be-
cause if the characteristic polynomial of a linear
system is a Hurwitz polynomial then the system is
stable. At first the researchers investigated crite-
ria for deciding if a polynomial is Hurwitz polyno-
mial and several criteria were found, among which
can mention the Routh-Hurwitz criterion ([Hurwitz,
1895]), the Hermite- Biehler’s theorem ([Hermite,
1856]), the Liènard-Chipar conditions ([Liènard and
Chipart, 1914]), the stability test ([Battacharayya et al.
1995]), the Mihailov’s theorem ([Loredo-Villalobos,
2012],[Mihailov, 1938]) or Routh’s algorithm ([Routh,

1877]). Later researchers also investigated interesting
properties about these polynomials, for instance, the
relation between the Hadamard product and Hurwitz
was studied and several result were found ([Garloff
and Wagner, 1996],[Loredo-Villalobos and Aguirre-
Hernández, 2011], [Loredo-Villalobos and Aguirre-
Hernández, 2012], [Loredo-Villalobos, 2012]).
It is worth mentioning that topological and geomet-

ric approaches have also used in the study of the set
of Hurwitz polynomials (see [Aguirre-Hernández et
al., 2009], [Aguirre-Hernández et al., 2012], [Aguirre-
Hernández el al., 2012]).A substantial amount of in-
formation about these polynomials and issues can be
found in [Battacharayya et al. 1995], [Gantmacher,
1959], [Lancaster and Tismenetsky, 1985], [Loredo-
Villalobos, 2012] and [Zabczyk, 1992]. Recent infor-
mation about Hurwitz polynomials can be consulted
[Rahman and Schmeiser, 2002] y [Fisk, 2008]. In this
paper we will discuss some of these criteria with the
aim of developing some open research problems.
A short version of this paper was presented in Physcon

2013 congress (see [Aguirre-Hernández et al., 2013]).

2 Necessary Conditions
We begin this section by setting the main definition.

Definition. A polynomial with real coefficients f(t) =
b0t

n + b1t
n−1 + · · · + bn−1t + bn is Hurwitz, if all

its roots have negative real part. These polynomials
also are named stable Hurwitz polynomials or stable
polynomials.

Example 1. The polynomial g(t) = t2 + 5t + 6 is a
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polynomial Hurwitz because its roots are t = −2,−3.

Example 2. The polynomial h(t) = t2 + 25 is not a
Hurwitz polynomial because its roots are t = −5i, 5i.

The following theorem establishes a necessary condi-
tion for a polynomial is a Hurwitz polynomial.

Theorem 1. If p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

is a Hurwitz polynomial and ξ ∈ C then one of the
following conditions is hold:

a) If Re(ξ) > 0, |p(ξ)| > |p(−ξ)|.
b) If Re(ξ) = 0, |p(ξ)| = |p(−ξ)|.
c) If Re(ξ) < 0, |p(ξ)| < |p(−ξ)|.

Proof. We can write p(x) as

p(x) = an(x− α1)(x− α2) · · · (x− αn)

with αi ∈ C−. We have two cases:
Case 1. Suppose that αk ∈ R− and ξ = a + ib. If
Re(ξ) > 0 then (a − αk)

2 + b2 > (a + αk)
2 + b2,

this imply that |ξ − αk|2 > | − ξ − αk|2, from where
|ξ − αk| > | − ξ − αk| and |p(ξ)| > |p(−ξ)|. For the
remaining b) and c) items we follow a similar reason-
ing.
Case 2. Pair of conjugate roots. Now we suppose that

αr = γ + iδ, αs = γ − iδ, γ < 0, δ > 0

If Re(ξ) > 0 then

(a− γ)2 > (a+ γ)2 and (a− γ)4 > (a+ γ)4

this imply that

(a− γ)4 + (a− γ)2[(b− δ)2 + (b+ δ)2] >

(a+ γ)4 + (a+ γ)2[(b− δ)2 + (b+ δ)2]

namely

|ξ − αr|2|ξ − αs|2 > | − ξ − αr|2| − ξ − αs|2

Therefore

|ξ − αr||ξ − αs| > | − ξ − αr|| − ξ − αs|

from where |p(ξ)| > |p(−ξ)|. Remaining items can
prove similarly.

Problem 1. An open problem is to determine which
other assumptions must be added to the previous theo-
rem to have necessary and sufficient conditions.

Theorem 2. If p(x) is a Hurwitz polynomial then p′(x)
is a Hurwitz polynomial.

Proof. Let w1, w2, . . . , wn roots of p(t). Since p(t) is
Hurwitz then Rewi < 0 ∀ i (1 ≤ i ≤ n). Let t such
that Re t ≥ 0. If Re (−wi) > 0 then Re (t − wi) =
Re t+ Re (−wi) > 0. From where

Re
(

1

t− wi

)
> 0

⇒ Re

(
n∑

i=1

1

t− wi

)
> 0

then

p′(t)

p(t)
=

n∑
i=1

1

t− wi
̸= 0

Therefore p′(t) ̸= 0 ∀ t (Re t ≥ 0), from where the
roots of p′(t) belong to C−.

Problem 2. What conditions should be added to p′(x)
for it implies the stability of p?

Remark 1. Theorem 2 let us verify if a polynomial
is unstable checking the instability of a smaller degree
polynomial (p′(x)).

Remark 2. If we solve the problem 2, it let us ver-
ify if a polynomial is Hurwitz checking the stability of
p′(x) and an additional condition. The criteria would
be different to the test explained in section 7.

3 Routh-Hurwitz Theorem
Next we set up the Routh-Hurwitz criterion . There
are several tests of this theorem. To see some of
them please refer to the references [Battacharayya et
al. 1995], [Lancaster and Tismenetsky, 1985] and
[Loredo-Villalobos, 2012].

Theorem 3 (Routh-Hurwitz criterion). Given a poly-
nomial with real coefficients f(t) = b0t

n + b1t
n−1 +

· · ·+ bn−1t+ bn we define the Hurwitz matrix associ-
ated with this polynomial

H(f) =


b1 b0 0 · · · 0
b3 b2 b1 · · · 0
...

...
...

...
...

b2n−3 b2n−4 b2n−5 · · · bn−2

b2n−1 b2n−2 bn−3 · · · bn


where bk = 0 if k > n.
to such polynomial has all of his roots with negative
real part , it is necessary and sufficient that it satisfies

b0∆1 > 0,∆2 > 0, b0∆3 > 0,∆4 > 0,

. . . ,

{
b0∆n > 0, if n is odd
∆n > 0, if n is even
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where ∆i are principal diagonal minors of the matrix
of Hurwitz, i.e.

∆1 = det(b1),

∆2 = det

(
b1 b0
b3 b2

)
,

...
∆n = detH(f)

In case b0 = 1, the condition simply said that the lower
main diagonals must be positive, i.e. ∆1 > 0,∆2 >
0,∆3 > 0, . . . ,∆n > 0.

Example 3. Consider the polynomial p(t) = t3+5t2+
3t+ 7. The Hurwitz matrix corresponding to the poly-
nomial p is the matrix

H(p) =

5 1 0
7 3 5
0 0 7


so we have to the lower main diagonals are ∆1 = 5 >
0, ∆2 = 8 > 0, ∆3 = 56 > 0, then we can claim that
the polynomial p(t) is a Hurwitz polynomial.

4 Lienard-Chipart’s Conditions
In verifying whether a polynomial of degree n is a

polynomial Hurwitz or not using the Routh-Hurwitz
criterion, we see that we will have to compute n de-
terminants and check if they have positive sign. If the
degree is so large then we will have to make a good
amount of operations. For this reason it is desirable
that one could work with criteria to reduce operations.
This objective is satisfied by following theorem, which
may be considered as an improvement Criteria Routh-
Hurwitz.

Theorem 4 (Lienard-Chipart’s conditions). The
polynomial f(t) = b0t

n + b1t
n−1 + · · ·+ bn−1t+ bn

( b0 > 0) is Hurwitz if and only if satisfies any of the
following conditions:
1) bn > 0, bn−2 > 0, bn−4 > 0, ...;

∆1 > 0,∆3 > 0,∆5 > 0, ...

2) bn > 0, bn−2 > 0, bn−4 > 0, ...;

∆2 > 0,∆4 > 0,∆6 > 0, ...

3) bn > 0, bn−1 > 0, bn−3 > 0, ...;

∆1 > 0,∆3 > 0,∆5 > 0, ...

4) bn > 0, bn−1 > 0, bn−3 > 0, ...;

∆2 > 0,∆4 > 0,∆6 > 0, ...

Example 4. Consider the polynomial q(t) = t3+8t2+
2t+ 9. The Hurwitz matrix corresponding to the poly-
nomial q is the array

H(q) =

 8 1 0
9 2 8
0 0 9


First let’s look at that all the coefficients of the polyno-
mial are positive , then we can use the 2) or 3) of the
conditions of Lienard-Chipart: as ∆2 = 7 > 0 then
q(t) is a Hurwitz polynomial.

Problem 3. Does Lienard-Chipart’s criterion have the
lowest number of principal minors needed or could be
improved?

Remark 3. The answer to this question could offer a
computational advantage.

5 Phase theorem
The following is the theorem of the phase, also known

as the theorem of Mihailov . The Mikhailov crite-
rion gives a necessary and sufficient condition for the
asymptotic stability of a linear differential equation of
order n.

Theorem 5 (Mihailov criterion). The real polynomial
p(t) = a0t

n+ a1t
n−1+ ...+ an is Hurwitz if and only

if the argument of p(iω), arg(p(iω)), is a function of
ω and strictly increasing continuous on (−∞,∞). In
addition, the net increase of the argument of −∞ to ∞
is nπ, i.e.

arg[p(i∞)]− arg[p(−i∞)] = nπ (1)

Proof. By the fundamental algebra theorem we can
write

p(t) = an(t− a1 − ib1)(t− a2 − ib2) · · · (t− anibn)

then

p(iω) = an[−a1 + i(w − b1)] · · · [−an + i(w − bn)]

and

arg p(iω) = arg(an) + arg[−a1 + i(ω − b1)]+

· · ·+ arg[−an + i(ω − bn)]

= arg(an) + arctan

(
ω − b1
−a1

)
+

· · ·+ arctan

(
ω − bn
−an

)
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It is easy to verify that arg p(iω) is an increasing func-
tion in ω. On the other hand

lim
ω→+∞

arg p(iω) = arg(an) +
nπ

2

and

lim
ω→−∞

arg p(iω) = arg(an)−
nπ

2

therefore

arg[p(+i∞)]− arg[p(−i∞)] = nπ

The proof of the necessary condition can be consulted
in [Battacharayya et al. 1995].

Problem 4. What will be the roots of P (t) if the curve
p(iω) not intersects and what is the meaning into appli-
cations?

Remark 4. It would be interesting the meaning of this
property in electrical circuits or mechanical systems
where the Hurwitz polynomials appear.

Problem 5. Do a description of the analytical func-
tions f(t) that satify arg(f(iω)) are strictly increasing
functions?

Remark 5. This is a problem of mathematical interest.

6 Hermite-Biehler’s Theorem
The theorem of Hermite-Biehler is one of the most

useful criteria to determine the stability of a real poly-
nomial. Spell it out for the following definitions are
necessary, for more details see [Gantmacher, 1959].
Consider the real polynomial

p(x) = a0 + a1x+ a2x
2 · · ·+ anx

n

We can write p the following way

p(x) = (a0 + a2x
2 + · · · ) + x(a1 + a3x+ · · · ) (2)

Evaluanting in iω, we have

p(iω) = (a0−a2ω+ · · · )+ iω(a1−a3ω
2+ · · · ) (3)

We define

peven(x) = a0 + a2x
2 + a4x

4 + · · · (4)

podd(x) = a1 + a3x
2 + a5x

4 + · · · (5)

pe(ω) = a0 − a2ω
2 + a4ω

4 − · · · (6)

po(ω) = a1 − a3ω
2 + a5ω

4 − · · · (7)

A pair of polynomials u, v are said to be a couple pos-
itive coefficients, if the principal of u and v have the
same sign and the roots µi u and νi of v are various,
real and negative and satisfies any of the following two
properties of interlaced:

νm < µm < νm−1 < · · · < ν1 < µ1 < 0, (m = k)
(8)

µm < νm−1 < µm−1 · · · < ν1 < µ1 < 0, (m = k + 1)
(9)

where m = deg(u) y k = deg(v). Any polynomial
that satisfies one of these partnerships has only real
zeros. Note that the polynomials given in (6) and (7)
form a couple positive and that the expression (2) can
be written and the way

p(x) = f(x2) + xg(x2)

where f and g are like (4) and (5).

Theorem 6 (Hermite-Biehler). A polynomial p(x) =
f(x2)+xg(x2) with real coefficients is Hurwitz if and
only if f and g are a couple positive.

Hermite-Biehler’s theorem can be also found in [Bat-
tacharayya et al. 1995].

7 Stability Test
From a computational viewpoint it is interesting to

have a method that let us to verify the stability of a
n-degree polynomial by means the stability of a n − 1
degree polynomial. In this section we expose a such
method.
Definition. Given the polynomial P (t) = ant

n +
an−1t

n−1 + · · ·+ a1t+ a0, if an−1 ̸= 0, we define

Q(t) = an−1t
n−1 +

(
an−2 −

an
an−1

an−3

)
tn−2+

an−3t
n−3 +

(
an−4 −

an
an−1

an−5

)
tn−4 + · · ·

(10)

Theorem 7. If P (t) has all of its positive coefficients,
then P (t) is Hurwitz if and only if Q(t) is Hurwitz.

The previous theorem shows how to check if a poly-
nomial P(t) is Hurwitz through successive reduction of
your grade. This result allows us to provide an algo-
rithm to check if a polynomial is Hurwitz or not.

Algorithm.

1) Do P (0)(t) = P (t).
2) Verify that all coefficients of P (i)(t) are positive.
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3) Build P (i+1)(t) = Q(t) using equation 1
4) Return to (2). If the polynomial does not satisfy

(2) stop the process and then P (t) is not Hurwitz.
In another case to continue the process until reach
P (n−2)(t) which is grade 2 and then P (t) is Hur-
witz.

Example 6. We verify if the polynomial

q(t) = t5 + 5t4 + 10t3 + 10t2 + 5t+ 1

is Hurwitz. We take

P (0)(t) = t5 + 5t4 + 10t3 + 10t2 + 5t+ 1

then we build P (1)(t):

P (1)(t) = 5t4 +

(
10− 1

5
10

)
t3 + 10t2

+

(
5− 1

5
1

)
t+ 1

= 5t4 + 8t3 + 10t2 +
24

5
t+ 1

Observe that the coefficients of P (1)(t) are positive, so
the step 2) is hold, then we build P (2)(t):

P (2)(t) = 8t3 +

(
10− 5

8

(
24

5

))
t2 +

24

5
t

+

(
1− 5

8
0

)
= 8t3 + 7t2 +

24

5
t+ 1

We see that P (2)(t) satisfies the step 2) of the algo-
rithm, then following we build P (3)(t)

P (3)(t) = 7t2 +

(
24

5
− 8

7
(1)

)
t+ 1

= 7t2 +
128

75
t+ 1

As P (3)(x) is of degree 2 and all its coefficients are
positive then, by the step 4) of the algorithm, we can
conclude that q(x) is Hurwitz.

Problem 6. What of the mentioned criteria will be the
most efficient from a computational point of view?

Remark 6. Obviously this problem has a computa-
tional interest.

Problem 7. Describe the functions that can be approx-
imate by Hurwitz polynomials.

Remark 7. This problem is in the domain of the Math-
ematical Analysis, but it could be researched if can be
used in applications. It is important to mention that the
Routh-Hurwitz criterion and the stability test are equiv-
alent criteria.

8 Importance of the Hurwitz Polynomials in Con-
trol Theory

We consider the system


ẋ1

ẋ2

...
ẋn

 =


0 1 0 · · · 0
0 0 1 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
−an −an−1 −an−2 · · · −a1




x1

x2

...
xn



+


0
0
...
1

u

We look for a control u = −kcTx with k ≥ 0 and
c ∈ Rn, then the controlled system is


ẋ1

ẋ2

...
ẋn

 =


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
−an − kcn −an−1 − kcn−1 · · · −a1 − kc1




x1

x2

...
xn


The characteristic polynomial is

p(t) = tn+ a1t
n−1+ · · ·+ an+ k(c1t

n−1+ · · ·+ cn)

Then, to obtain a stabilizing control for all k ≥ 0 we
need that p(t) is Hurwitz for all k ≥ 0 and then we
could use the theorems explained in this paper.

Final remark. Some of the open problems have a prac-
tical interest, but most of them are theoretical. We won-
der if all open problems have utility in applications, but
this is also a topic of future research.

9 Conclusions
In this paper we presented some criteria for deciding if

a polynomial is a Hurwitz polynomial and we showed
some open problems about these polynomials, in order
to motivate the researcher continue with the study of
them.
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dune èquation algèbrique comprise entre des limites
donnés. J. Reine Angew. Math., 53, pp. 39–51.

Hurwitz, A. (1895). Uber die bedingungen, unter
welchen eine gleichung nur wurzlen mit negativen
reellen teilen besitzt. Math. Ann., 46, pp. 273–284.

Lancaster, P., and Tismenetsky M. (1985). The Theory
of Matrices with applications, second edition, Aca-
demic Press, Orlando.
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