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Abstract 
In the present paper the nonlinear association analysis 
of the EEG brain data in the process of bistable image 
perception are realized. Brain functional connectivity 
can be characterized by the temporal evolution of 
correlation between signals recorded from spatially-
distributed regions. Numerous techniques were 
introduced for assessing this connectivity. Among 
nonlinear regression analysis methods, we chose a 
method introduced in the field of EEG analysis by 
Pijn, Lopes da Silva and colleagues, based on the 
fitting of a nonlinear curve by piecewise linear 
approximation, and more recently evaluated in a 
model of coupled neuronal populations. This method 
has some major advantages over other signal analysis 
methods such as coherence and cross-correlation 
functions because it can be applied independently of 
whether the type of relationship between the two 
signals is linear or nonlinear. 
In the capacity of bistable image we used a set of 
images based on a well-known bistable object, the 
Necker cube, as a visual stimulus. This is a cube with 
transparent faces and visible ribs. Bistability in 
perception consists in the interpretation of this 3D-
object as to be oriented in two different ways, in 
particular, if the different ribs of the Necker cube are 
drawn with different intensity.  
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1Introduction 
Nowadays, the study of brain dynamics in cognitive 
activity attracted much attention of researchers. Such 
studies often used electroencephalography, because 
this method is non-invasive and does not require 
significant limitations volunteer mobility, nor for 
costs. The investigations of nonlinear processes in the 
brain neural network during perception of ambiguous 
(the so-called bi- and multistable) images are very 
important for the understanding of both the visual 
recognition of objects and the decision-making 
process. Nowadays, the perception of ambiguous 
images attracts huge attention of many scientists. In a 
sense, such images are good objects for studying the 
visual perception in general as well as the decision-
making mechanisms. Images of this type have been 
the object of research for psychologists for a long time 
[Niedermeyer, E. et al., 2004; Buzsaki, G. et al., 
2004]. Recently, ambiguous images awoke interest of 
physicists and mathematicians [van Luijtelaar, G. et 
al., 2011; van Luijtelaar, G. et al., 2016]. Despite of 
considerable efforts of many researchers, the main 
mechanisms underlying interpretation of a multistable 
image are not well understood. At present, perception 
is known to be a result of nonlinear processes which 
take place in the distributed neural network of 
occipital, parietal and frontal regions of the brain 
cortex [Buzsaki, G. et al., 2004; Nazimov, A. I. et al., 
2013]. The perception of ambiguous (bistable) images 
was thoroughly investigated in the last decade. The 



 
 

 

most popular bistable images are Rubin vase, Mach 
bands, Rorschach test, Boring’s old/young woman 
illusion, Necker cube, etc. [Doron I., et al., 2006; van 
Vugt, M. K. et al., 2007; Sitnikova, E. et al., 2009; 
Hramov, A. E. et al., 2015].  
In this work for study of brain dynamics in cognitive 
activity the brain structures are analyzed on their 
functional connectivity in order to reveal the dynamics 
of detailed network. Functional connectivity between 
brain structures was studied with the aid of the non-
linear association analysis [Pijn, 1990; Pijn et al., 
1989]. This signal analytical technique has frequently 
been shown to be a reliable measure for functional 
coupling of brain signals.  
Its main advantage above several other connectivity 
measures is that it does not presume a linear 
relationship between signals and is able to reveal 
information about the direction of coupling. It is a 
time-domain analysis, which can reveal three different 
parameters of interest: the strength of functional 
coupling or maximal association between two brain 
signals h2; time-delays of a signal between brain 
structures or signal transduction time τ; the direction 
of functional coupling. 
 
2 Experiment  
Unsymmetrical Necker cube was used as ambiguous 
image in our experiments. The contrast of the three 
middle lines centered in the left middle corner was 
used as one of the control parameter I taking the 
values from the range [0; 1]. If I is equal to 1 observer 
will see the right-oriented cube, whereas zero value of 
the control parameter corresponds to the left-oriented 
cube. The intensity of the three middle lines centered 
in the right corner was set to (1 − I), and the intensity 
of the six visible outer cube edges was fixed to 1. For 
another values of control parameter there will be 
spontaneous alternations between these two 
projections of Necker cube in the process of its visual 
perception. Left- and right-oriented projections of 
Necker cube and several cubes from those having 
been used in experiments with I that differs from 0 
and 1 are shown in Fig. 1.  
 

 
Figure 1. Unsymmetrical Necker cubes. Necker cubes 

with limit and intermediate values of I are shown. 
 
Necker cube image was placed in the middle of the 
computer screen on the wight background. The 
bistable visual perception of the Necker cube image 
was explained to and really seen by all participants. 
Subjects were instructed to press left or right keys on 
the control panel each time their perception of the 
cube changed. The experiment consists of several runs 
of 10 min each. The runs were interrupted by breaks 
of a lengths freely chosen by the subjects, thus 

minimizing tiring effects [Merk, I. et al., 2002; 
Grubov, V. V. et al., 2016]. The duration of each 
period at constant perception was computed from the 
time interval between two successive keystrokes. 
Total time of experiment was about 50 minutes for 
each cube. To organize visual stimulation and data 
registration an equipment of Medicom MTD 
“ENCEPHALAN EEGR–19/26” with corresponding 
software program was used. Sampling frequency of 
EEG was equal to 250 Hz, frequency range of data 
was from 0.016 Hz to 70 Hz with a notch filter at 50 
Hz. For EEG registration monopolar method of 
registration and the standard international system “10-
20” for placing electrodes were used. [Jasper, H. H. et 
al., 1958]. 
 
3 Method 
To estimate the degree of association between two 
signals and the corresponding time delay, the 
nonlinear correlation coefficient h2 was calculated as a 
function of time shift (τ) between the two signals. This 
statistical measure was first introduced in EEG signal 
analysis by Pijn and colleagues [Lopes da Silva et al., 
1989; Pijn et al., 1989; Pijn, 1990]. It describes the 
dependency of a signal Y on a signal X in a general 
way. This method has some major advantages over 
other signal analysis methods such as coherence and 
cross-correlation functions because it can be applied 
independently of whether the type of relationship 
between the two signals is linear or nonlinear. Details 
of the theoretical and practical aspects of this method 
can be found in the above-mentioned reports. 
The basic idea is that if the amplitude of signal Y is 
considered as a function of the amplitude of signal X, 
the value of y given a certain value of x can be 
predicted according to a nonlinear regression curve. 
The variance of Y according to the regression curve is 
called the explained variance, i.e., it is explained or 
predicted on the basis of X. By subtracting the 
explained variance from the total variance one obtains 
the unexplained variance. The correlation ratio η2 
expresses the reduction of variance of Y that can be 
obtained by predicting the y values according to the 
regression curve as follows: η2 (total variance - 
unexplained variance)/total variance. 
In practice, a numerical approximation of the 
nonlinear regression curve is obtained by describing 
the scatterplot of y versus x by segments. of linear 
regression curves. The variable x is subdivided into 
bins; for each bin the x value of the midpoint (pi) and 
the average value of y (qi) are calculated, and the 
resulting points (pi,qi) are connected by segments of 
straight lines (= linear regression curves). The 
nonlinear correlation coefficient h2, which is the 
estimator for η2, can now be computed as the fraction 
of total variance that can be explained by the segments 
of linear regression lines, as follows: 
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with N being the number of samples and <y> being the 
average of all yi.  
The estimator h2, which signifies the strength of the 
association between the two signals, can take values 
between 0 (Y is totally independent of X) and 1 (Y is 
completely determined by X). In the case of a linear 
relationship between x and y, the η2 reduces to the 
common regression coefficient r2. Similarly, as in the 
case of the cross-correlation, one can estimate h2 as a 
function of time shift (τ) between signal X and Y or 
vice versa. That shift for which the maximum value 
for h2 is reached is used as an estimate of the time lag 
between the two signals. 
 

 
Figure 2.The dependence of nonlinear correlation 

coefficient h2 on the time shift (τ) for example for O2-
P4 (a) and Pz-P3 (b) channels. 

 
4 Conclusion 
In the work, the EEG brain data is analyzed with using 
the method of nonlinear correlations. The strength of 
functional coupling between the signals of different 
brain structures and the delays between them are 
revealed. 
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