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Abstract
This paper deals with the possibilities of the random-

ized control for optimizing the trajectory of the UAV
horizontal flying under unknown wind disturbances.
We suggest a small UAV which is equipped for navi-
gation only with the GPS module. Only the positions
data received iteratively at discrete time instants can be
used. The user must be able to add test perturbations
through the input channel. The assumptions concern-
ing the noise are reduced to a minimum: it can virtually
be arbitrary yet independent of test perturbations. The
theoretical results are illustrated by simulations. Op-
erability of the new algorithm under irregular noise in
observations in comparison with traditional approaches
is illustrated by simulation examples. For practical use
we designed a small autonomous unmanned planner
with an autopilot and additional microcomputer on the
board. The effective interoperability process between
autopilot and microcomputer by SIP was organized.
The connection between microcomputer and ground
base or microcomputers of the other UAVs was estab-
lished by Wi-Fi or Internet connection.

Key words
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Nowadays single or group autonomous unmanned
aerial vehicles (UAVs) are applied more often for area
investigation or monitoring, searching and tracking of
the people, vehicles etc. The quality of the task fulfill-
ing depends significantly on the exact positioning and
the following by a given trajectory.
The massive inertial navigation gyroscopes, magne-

tometers, accelerometers, and various measuring sen-
sors are used for a large UAV. They are able to re-
duce the negative effects of measurement errors during
the motion and provide a fairly accurate positioning.

The GPS navigation network development simplifies
greatly the solving of a positioning task in a combina-
tion with an inertial system. Technological advances,
miniaturization of actuators, their growth and the avail-
ability features expansion allow to begin an effective
usage of a small UAV for the investigation or moni-
toring of an areas. The relatively small size and light
weight are, on the one hand, the basis of “cheap” appro-
priate technical solutions, but, on the other hand, does
not allow to use of powerful inertial navigation systems
which is limited the use of an inertial system only to
maintain the “current” equilibrium. For the position-
ing of these objects GPS sensor are used mainly. The
problems of a positioning accuracy and a compliance
with prescribed trajectory are solved usually with filters
which predict a possible bias in the next moment. The
decision about necessary course corrections are made
on the basis of these predictions.
The problem of predicting values of a random process

generated by white-noise disturbances passed through
the linear filter is most typical for the Kalman filtering.
Studying the case of observations with statistical errors
goes back to the pioneer work [Kalmal and Bucy, 1961]
it seems to be complete by now.
In parallel with statistical statements, minimax prob-

lem statements are also developed. Here, uncertain-
ties are considered as boundedness in a certain sense,
but in other respects, they may be arbitrary. In these
statements with a priori knowledge of the noise level, it
is usually sufficient to derive predictions in the form
of sets whose sizes are stabilized in time (see, e. g.
[Bai, Nagpal and Tempo, 1996], [Garulli, Giarre and
Zappa, 2002], [Polyak and Sherbakov, 2002], [Polyak
and Topunov, 2008]). In this case, no consideration is
given to the possibilities of deriving estimates which
converge to the true point of unknown parameters.
Practical use of estimates-sets leads to intricate prob-
lems of robust stability.
Insufficient variety of input signals complicates the
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problem of an identification. An opportunity for a
control system to produce a special control (trial, test,
probing) signal in the input channel can significantly
alleviate the problem of unknown parameters recon-
structing. For example, if a harmonic signal is sent to
the input of a steady-state linear plant, the plant’s out-
put will also be a harmonic signal after the transition
process (it is assumed that there is no noise). The am-
plitude of this signal is proportional to the value of the
plant transfer function at the point which corresponds
to the frequency of the input harmonic signal. By vary-
ing the frequency, we can reconstruct the whole plant
transfer function. In a similar way, a series of single
pulses in the input channel allows for reconstructing
the plant pulse function.
Moreover, special randomized test signals in the input

channel allow identification of the control plant param-
eters when we consider a plant model with almost ar-
bitrary additive external noise [Granichin and Fomin,
1986]. The procedure suggested in [Granichin and
Fomin, 1986] is valid for any noise and does not require
a priori knowledge of its characteristics; noise may be
not random or may be white or correlated, with zero-
mean or bias; a signal-noise ratio may be high or low.
The recovery of unknown parameter values is provided
by the properties of randomized test signals which are
added together with an intrinsic adaptive control sig-
nal from a closed loop. This approach follows from
Feldbaum’s concept of dual control [Feldbaum, 1960]:
control must be not only directing, but also learning.
Consider a dynamical system

yt = G⋆(z−1)ut + vt (1)

with input ut and output yt shown in Fig. 1.

Fig. 1. Dynamical system.

Noise vt describes all other sources, apart from ut ,
which cause variation in yt . z−1 is a delay operator:
z−1ut = ut−1. The transfer function G⋆(z−1) belongs
to a set of transfer functions G(θ ,z−1) parameterized
by θ , i. e. G⋆(z−1) = G(θ⋆,z−1) for some θ⋆. The
structure of the model class G(θ ,z−1) is known but θ⋆
itself is unknown. The problem under consideration is
to determine, based on a finite set of input and output
data collected at time t = 1,2, . . . ,N, a confidence re-
gion Θ̂ for θ⋆ with a specified probability chosen by
a user. Moreover, Θ̂ must be constructed without any
a priori knowledge of the noise level, distribution, or
correlation.
The standard approach to obtaining confidence re-

gions is to use an asymptotic theory of system iden-
tification (see, e. g. [Ljung, 1999]). Although these

results have been used successfully in many applica-
tions, asymptotic estimates are only reliable when the
data volume N tends to infinity. When the number of
points of data measurements is finite the asymptotic
theory may cause erroneous results even for large data
sets. Another way—Set Membership Identification—
assumes that the boundaries of all uncertain system
components are a priori known. As a result, the guar-
anteed region of parameters is defined as a set of val-
ues that do not violate a priori boundaries [Bai, Nagpal
and Tempo, 1996], [Garulli, Giarre and Zappa, 2002],
[Polyak and Sherbakov, 2002].
In [Granichin, 1988], [Granichin, 1989], [Granichin,

1992], [Granichin, 2004], for the case of arbitrary noise
(e. g., unknown but bounded noise), the randomiza-
tion was used to develop an identification algorithm
which allowed for obtaining an asymptotically confi-
dence region of an indefinitely small size. These results
were extended to the case of time-varying parameters
in [Vakhitov, Granichin and Vlasov, 2010], [Amelin
and Granichin, 2011]. The information about the max-
imum possible amplitude of the noise has only been
used in the formulas for estimating the rate of conver-
gence, i. e. this knowledge is not required for operabil-
ity of an identification algorithm.
In [Granichin, 2012], [Amelin and Granichin, 2012] it

was presented a procedure which gives rigorously guar-
anteed nonasymptotic confidence regions for unknown
parameters of a linear dynamical control plant which
is disturbed by arbitrary noise. The procedure con-
sists of simple input design steps followed by an algo-
rithm named LSCR (Leave-out Sign-dominant Corre-
lation Regions) which is mostly promoted by M. Campi
and E. Weyer [Campi and Weyer, 2010]. But the LSCR
method is difficult to use directly when we consider
identification problems in the context of adaptive con-
trol under arbitrary noise. In particular, the practi-
cal application of the LSCR method to systems with
feedback, which was considered in [Campi and Weyer,
2010] (Remark 3 on p. 2711), is only possible for an a
priori chosen stationary control law. If the control plant
is not stabilized and input and output variables increase
infinitely, a linear model is usually not valid from the
practical point of view, and the regions obtained by the
algorithms from [Campi and Weyer, 2010], which were
proved theoretically, may not be directly relevant to the
original problem statement. If the closed-loop regula-
tor changes in time depending on current observations,
it implies that one of the main conditions of the appli-
cability of the LSCR method from [Campi and Weyer,
2010] is violated.
The main contribution of this paper is extending the

results of [Amelin and Granichin, 2011], [Amelin and
Granichin, 2012] to a more practice problems of a
small UAV fly path optimization.
The paper is organized as follows: At the beginning

we summarize the result of [Amelin and Granichin,
2012] about randomized control strategies. Then, in
Section III, we formulate a linear filtering problem un-
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der arbitrary noise in observations. Section IV pro-
vides the simple model of horizontal UAV flying un-
der noise discreet position measurement and the rules
to form control inputs (control synthesis) which allow
to achieve the better performance of flying path. Sec-
tion V presents a simulation study example. The tech-
nical characteristics of UAV which is built to approve
the main theoretical result is given in Section VI. At the
end, we make conclusions.

1 Control Actions with Randomized Test Signals
The procedure discussed further is intended to iden-

tify the unknown parameters of a dynamic scalar linear
control plant which is described by an autoregressive
moving average model. It is based on reparameteri-
zation of a plant mathematical model. Instead of the
plant natural parameters — dynamic coefficients — it
is convenient to use some other parameters which are in
one-to-one correspondence with them. Such reparame-
terization is a result of rewriting the plant’s equation in
a moving average model form which makes it possible
to use the LSCR procedure for building the confidence
region even in the cases if an adaptive algorithm is used
in the feedback channel.
We assume that a control plant has scalar inputs and

outputs and it is described by Equation (1) in discrete
time with G⋆(z−1) = B⋆(z−1)/A⋆(z−1), where

A⋆(λ ) = 1+a1
⋆λ + · · ·+ana

⋆ λ na ,

B⋆(λ ) = bl
⋆λ l +bl+1

⋆ λ l+1 + · · ·+bnb
⋆ λ nb ,

natural numbers na,nb are the output and input (con-
trol) model orders; l is a delay in a control, 1 ≤ l ≤ nb;
a1
⋆, . . . ,a

na
⋆ ,bl

⋆, . . . ,b
nb
⋆ are plant parameters, a part of

which is unknown.
It is required to define with a given probability an area

of reliability for unknown coefficients of the plant (1)
by the observations of outputs {yt} on a finite inter-
val of time t = 1,2, . . . ,N, and known inputs (controls)
{ut} which can be chosen.
Let s≤ na+nb− l+1 be a positive integer number. (It

is usually equal to the amount of unknown parameters
of the plant (1)). And let N = s ·N∆ with some N∆.
Let us choose a sequence of independent random vari-

ables symmetrically distributed around zero (a random-
ized test perturbation) ∆0,∆1, . . . ,∆N∆−1 and add them
to the input channel once per every s time moments (at
the beginning of each time interval) in order to “enrich”
the variety of observations.
To be more precise, we will build controls {ut}N−l

t=0 by
the rule

usn+i−l =

{
∆n + ūsn−l , i = 0,
ūsn+i−l , i = 1,2, . . . ,s−1,

n = 0, . . . ,N∆ − 1, where “intrinsic” controls {ūt} are
determined by an adjustable feedback law

ūt = Ut(yt ,yt−1, . . . , ūt−1, . . .), t ≥ 0, ū−k = 0, k > 0.

The type and characteristics of a feedback depend on
specific practical problems. In particular, it is possible
to use a trivial law of “intrinsic” feedback: ūt = 0, t =
0,1, . . . ,N − l.
Main assumption
A1. The user can choose ∆n and this choice

does not affect to the external noise vsn, . . . ,vs(n+1)−1.
(In the mathematical sense ∆n does not depend on
{vt}s(n+1)−1

t=1 .)
Note, that no assumptions are made about the noise vt

and the upper limits of noise amplitudes. If the noise is
random there are no assumptions about the zero-mean
or any autocorrelation properties.
For time instant sn, n = 0, . . . ,N∆ − 1, we can denote

v̄sn = vsn+(1−A⋆(z−1))ysn+(B⋆(z−1)−bl
⋆z−l)usn and

rewrite Equation (1) in the following form:

ysn = ∆nθ 1
⋆ +θ 1

⋆ ūsn−l + v̄sn,

where θ 1
⋆ = bl

⋆. This equation shows a direct relation
between observation ysn and test signal ∆n which does
not depend on the “new” noise v̄sn.
Similarly, we rewrite Equation (1) for the rest of times

sn+k−1, k = 2, . . . ,s, sequentially excluding the vari-
ables ysn+k−1, . . . ,ysn from the left-hand side of the
equation, using the same equation (1) for early time
instants:

ysn+k−1 = ∆nθ k
⋆ +

k−1

∑
i=0

θ k−i
⋆ ūsn−l+i + v̄sn+k−1, (2)

where θ k−i
⋆ , i = 0, . . . ,k− 1 are the corresponding co-

efficients of the remaining right-hand side terms with
ūsn−l+i.
In [Granichin and Fomin, 1986] and [?], the authors

suggest forming new parameters as s-vector θ⋆ of co-
efficients θ k

⋆ obtained in (2). They also give conditions
for the invertibility of such reparameterization proce-
dure.
The next formula follows immediately from the above

definition θ⋆ = A−1B, where s × s matrix A and s-
vector B are

A=


1 0 . . . 0 0
a1
⋆ 1 . . . 0 0

a2
⋆ a1

⋆ . . . 0 0
...

...
. . .

...
...

0 . . . ana
⋆ . . . a1

⋆ 1

 , B=


bl
⋆
...

bnb
⋆
...
0

 .

Consider the conditions of the existence of a corre-
sponding inverse function.
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Assumption
A2. Let s be a positive integer such that a set of the

plant’s unknown parameters are uniquely determined
by some function τ(θ) from the above-defined vector
θ⋆.
By Lemma 5.5.1 on p. 224 from [Fomin, 1985] As-

sumption A2 holds for s = na + nb − l + 1 when the
plant’s orders na,nb are known and the following as-
sumption is satisfied:
A3. The polynomials znaA⋆(z−1) and znb B⋆(z−1) are

mutually prime.
In [Fomin, 1985] there is also the algorithm for the

inverse function τ(θ).
In practice only part of plant parameters are unknown

usually. Sometimes, unknown parameters correspond
to the low degrees of z−1 which are smaller than some
n̄a and n̄b respectively. In this case we can choose
s = n̄a + n̄b − l + 1 which is significantly less than
na + nb − l + 1. Moreover the “new” noise v̄sn+k−1
in (2) can be divided into two parts: nonmeasurable
ṽsn+k−1 and measurable ψsn+k−1. The latter is deter-
mined by observable inputs and outputs with known
coefficients (see the example below).
Example. Consider the second-order plant

yt +a1
⋆yt−1 + yt−2 = b1

⋆ut−1 +1.6ut−2 + vt , (3)

t = 1,2, . . . ,N, with unknown coefficients a1
⋆ and b1

⋆ ̸=
0.
Denote

τ⋆ =

(
a1
⋆

b1
⋆

)
.

Let s = 2 and vector θ⋆ of the “new” parameters be

θ⋆ =

(
b1
⋆

1.6−a1
⋆b1

⋆

)
∈ R2.

In this case the inverse function τ(θ) is

τ(θ) =

(
1.6−θ 2

θ 1

θ 1

)
.

Equations (2) have the following forms:

y2n = ∆nθ 1
⋆ +θ 1

⋆ ū2n−1 +ψ2n + ṽ2n,

y2n+1 = ∆nθ 2
⋆ +θ 2

⋆ ū2n−1 +θ 1
⋆ ū2n +ψ2n+1 + ṽ2n+1,

where ψ2n+k = 1.6ū2n−2+k − y2n−2+k, k = 0,1, ṽ2n =
v2n − a1

⋆y2n−1, ṽ2n+1 = v2n+1 + a1
⋆(a

1
⋆y2n−1 + y2n−2 −

1.6ū2n−2 − v2n).
Procedure for Constructing Confidence Regions

1. Using observational data we can write predictors
as a function of θ

ŷsn+k−1(θ) = ∆nθ k +
k−1

∑
i=0

θ k−iūsn+k−l−i, (4)

n = 0, . . . ,N∆ −1, k = 1, . . . ,s.

2. We can calculate the prediction error

εt(θ) = yt − ŷt(θ), t = 1, . . . ,N.

3. According to the observed data we form a set of
functions of θ

fsn+k−1(θ) = ∆nεsn+k−1(θ), n = 0, . . . ,N∆ −1,

k = 1, . . . ,s.

4. Choose a positive integer M > 2s and construct
M different binary stochastic strings (of zeros and
ones) (hi,1, . . . ,hi,N), i = 0,1, . . . ,M − 1, as fol-
lows: h0, j = 0, j = 1, . . . ,N, all the other elements
hi, j take the values of zero or one with the equal
probability 1

2 .
We calculate

gk
i (θ) =

N∆−1

∑
n=0

hi,ns+k · fns+k−1(θ), i = 0, . . . ,M−1,

k = 1, . . . ,s.

5. Choose q from the interval [1;M/2s]. For k =

1, . . . ,s, construct a region Θ̂k such that at least q
of the gk

i (θ) functions are strictly higher than 0 and
at least q of them are strictly lower than 0.
We define the confidence set by the formula

Θ̂ =
s∩

k=1

Θ̂k. (5)

Remarks. 1. The procedure described above is sim-
ilar to the one suggested in [Campi and Weyer, 2010]
but it has two significant differences from it. First, we
consider a confidence set Θ̂ in state space Rs instead of
Rna+nb . The confidence regions Θ̂k, k= 1, . . . ,s, are the
subsets of Rk instead of Θ̂k ⊂Rna+nb . Second, random-
ized trial perturbations are included through the input
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channel only once per every s time instants instead of
permanent perturbations in [Campi and Weyer, 2010].
2. If we can divide the “new” noise v̄sn+k−1 in (2)

into two parts — ṽsn+k−1 and ψsn+k−1 — where the
first part is nonmeasurable whereas the second is de-
termined by observable inputs and outputs with known
coefficients then in the above-described procedure we
can use stronger predictors instead of (4)

ŷsn+k−1(θ) = ∆nθ k +
k−1

∑
i=0

θ k−iūsn+k−l−i +ψsn+k−1.

The probability that θ⋆ belongs to each of Θ̂k, k =
1,2, . . . ,s, is given in the following theorem.
Theorem 1: Let condition A1 be satisfied. Consider

k ∈ {1,2, . . . ,s} and assume that Prob(gk
i (θ⋆) = 0) = 0.

Then,

Prob{θ⋆ ∈ Θ̂k}= 1−2q/M, (6)

where M, q and Θ̂k are from steps 4 and 5 of the above-
described procedure.
Proof: See [Amelin and Granichin, 2012].
The next corollary follows directly from Theorem 1.
Corollary 2: Under the conditions of Theorem 1

Prob{θ⋆ ∈ Θ̂} ≥ 1−2sq/M, (7)

where Θ̂ is taken from (5).
Note, that the value of the probability in (6) is accurate

but not the lower limit as it was pointed out in [Campi
and Weyer, 2010]. Inequality in (7) is obtained because
the events {θ⋆ ̸∈ Θ̂k}, k = 1, . . . ,s may overlap.
From the above it is easy to derive.
Theorem 3: Let conditions A1–A2 be satisfied and as-

sume that Prob(gk
i (θ⋆) = 0) = 0. Then, the set τ(Θ̂) is

the confidence set for unknown parameters of the plant
(1) with a confidence level of no less than 1−2sq/M.
Example
We return to control plant (3) with N = 960 and un-

known parameters a⋆ and b⋆.
Define the functions ft(θ):

f2n(θ)=∆n(y2n−∆nθ 1−θ 1ū2n−1−ψ2n), n= 0, . . . ,N∆−1,

f2n+1(θ)=∆n(y2sn+1−∆nθ 2−θ 2ū2n−1−θ 1ū2n−ψ2n+1).

Let us choose M = 480 and q = 6 and calculate the
empirical correlations

gk
i (θ)=

499

∑
n=0

hi,2n+k · f2n+k−1(θ), i= 1, . . . ,479, k= 1,2.

For k = 1,2 we construct the regions Θ̂k which only
include the values of θ for which no less than 6 of the
functions gk

i (θ), i = 1, . . . ,479, are strictly higher than
zero and no less than 6 of them are strictly lower than
zero.
By virtue of Theorem 3, the vector of true parame-

ters with a probability of more than 95% = (1− 2 · 2 ·
6/480) · 100% belongs to the confidence set τ(Θ̂) =

τ(Θ̂1∩Θ̂2).

Fig. 2. Confidence set τ(Θ̂).

Fig. 2 shows the regions τ(Θ̂), τ(Θ̂1), and τ(Θ̂2) ob-
tained from the simulation with true values a⋆ = −2
and b⋆ = 1, and characteristics of noise and stabiliz-
ing feedback like those in Section II of [Amelin and
Granichin, 2012]: {vt} is i.i.d. sequence of normally
distributed noise with mean 0.5 and dispersion 0.1 (bias
noise).

2 Prediction of a Random Process Observed
Under Arbitrary Bounded Disturbances

We will confine ourselves to considering the follow-
ing problem statement: a scalar signal is observed that
satisfies the equation

yt = φT
t θt + vt , (8)

which is a mixture of the transformed vector process
{θt}, θt ∈ Rs, and the observation noise {vt}. Here,
{φt} are s-dimension vectors which are known at the
time instant t. The vector process {θt} is generated by
a linear filter

θt+1 = Aθt +wt+1, (9)

in which A is the known matrix:

∥ A ∥=
√

λmax(AAT)≤ 1,
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and {wt} is a realization of a sequence of zero-mean in-
dependent random vectors. (Hereinafter, || · || is used to
mean a norm, λmax(A) and λmin(A) are the maximum
and minimum eigenvalues of the matrix A).
The main conditions at which the main results will be

formulated are the following:
B1. The inputs {φt}t≥1 represent a sequence of in-

dependent identically distributed random vectors with
bounded known mathematical expectations: ∥ Eφt ∥ ≤
Mφ < ∞, ∀t vectors φt do not depend on the random
values w1, . . . , wt and on v1, . . . ,vt}, if v1, . . . ,vt are ran-
dom. The random vectors

∆t = φt −Eφt

have symmetric distribution functions P(·) with the co-
variance matrices that satisfy the conditions

E∆t∆T
t = B > 0, ∥ B ∥ ≤ σ2

∆ < ∞

and the bounded fourth statistical moment:

E ∥ ∆t ∥4 = M4
4 < ∞.

Hereinafter, B > 0 means that B is a positive definite
matrix.
B2. ∀ t the random vectors wt+1 are independent and

zero-mean (E{wt+1}= 0) that satisfy the condition

EwtwT
t ≤ Qw ≤ σ2

wI < ∞.

B3. The sequence of the observation noises {vt}t≥1
represents either the values of a deterministic unknown
bounded function |vt | ≤ Cv, t = 1,2, . . ., or ∀ t it is a
realization of random vectors which are independent
together with ∆t and bounded in quadratic mean

Ev2
t ≤C2

v < ∞.

The problem of filtering with one-step prediction con-
sists in designing the estimate θ̂t+1 of the value of the
process {θt} at the time instant t + 1 based on the ob-
servations yk,φk, k ≤ t. The quality of filtering is de-
termined by the mean value of the squared prediction
errors

E ∥ θ̂t+1 −θt+1 ∥2 .

It is usually supposed that the vectors {φt} in the
observation model are specified by a deterministic se-
quence. Here, we assume that the sequence of the vec-
tors {φt} is random and satisfies condition B1.
Under this assumption Procedure (8) of the measure-

ment of the process θt is, in fact, randomized since the

sought signal is “weighed” with a randomly chosen set
of coefficients φt whose values are known at a current
moment.
Consider the following algorithm for the next estimate

generation

θ̂t+1 = Aθ̂t −αAΓ∆t(φT
t θ̂t −yt), ∆t = φt −Eφt , (10)

where t = 0,1, . . . , α > 0 is the step-size value and Γ is
a positive definite symmetrical matrix.
The initial data θ̂0 are assumed to be given by an ar-

bitrary nonrandom vector from Rs. Algorithm (16) is
called randomized because the current measurement is
carried out with a randomized input (a set of weights),
and the current estimate is changed in a randomized di-
rection AΓ∆t .
Substituting (8) and (9) into (16), for the prediction

error we get

θ̂t+1 −θt+1 = A(I−αΓ∆t∆T
t )(θ̂t −θt)−

−αAΓ∆t(EφT
t (θ̂t −θt)− vt)−wt+1.

Let us denote Dt := ∥θ̂t+1 − θt+1∥2 and Ft−1 is a σ -
algebra of {w1, . . . ,wt−1,v1, . . . ,vt−1,∆1, . . . ,∆t−1} Un-
der the assumptions made above, in view of indepen-
dence of the random vectors ∆t and wt+1, averaging
conditionally with respect to the prehistory of all ran-
dom processes up to the instant of time t except wt and
using the assumption B2, we deduce that

E{Dt |Ft−1,∆t}= ∥A(I−αΓ∆t∆T
t )(θ̂t −θt)−

−αAΓ∆t(E{φT
t (θ̂t −θ n)− vt |Ft−1,∆t})∥2 + sσ2

w.

Because of symmetry of the distribution for P(·) we
have

(θ̂t −θt)
TE{(I−α∆t∆T

t Γ)ATαAΓ∆t |Ft−1}×

×(E{φT
t (θ̂t −θt)− vt |Ft−1}) = 0.

Hence, taking the conditional expectation over Ft−1 by
virtue the assumption B1 it may be concluded that

E{Dt |Ft−1}≤ (1−2αλmin(BΓ)+α2∥Γ∥2M4
4)∥A∥2Dt−1

+α2E{(φT
t (θ̂t −θt)− vt)

2|Ft−1}∥AΓ∥2Tr[B]+ sσ2
w.
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Further, after taking unconditional mathematical ex-
pectation from the both parts of the last formula, using
the assumption B3 and satisfying the inequality below
for any ρ > 0

2EφT
t (θ̂t −θt)vt ≤ ρMφ v2

t +
Mφ

ρ
Dt−1,

for the mean value of the prediction error, we derive the
estimate

EDt ≤ ψ(α,ρ)EDt−1+

+α2(1+Mφ ρ)∥AΓ∥2Tr[B]C2
v + sσ2

w,

where

ψ(α,ρ) = (1−2αλmin(BΓ)+

+α2∥Γ∥2(M4
4 +(Mφ +

1
ρ
)Mφ Tr[B]))∥A∥2. (11)

From the last inequality it follows a direct conclusion
of the next theorem.
Theorem 4: Assume that the sequences
{yt},{φt},{vt},{θt} and {wt} are related by Equations
(8) and (9), α > 0, Γ is a positive definite matrix, and
θ̂ 0 is an arbitrary nonrandom vector from Rs.
If the assumptions B1–B3 are satisfied then for the

prediction errors of the estimates {θ̂t} generated by al-
gorithm (16) for any ρ > 0 and a sufficiently small α
such that ψ(α,ρ)< 1, the following inequality are sat-
isfied

E ∥ θ̂t+1 −θt+1 ∥2 ≤ ψ(α ,ρ)tE ∥ θ̂ 0 −θ 0 ∥2+

+
rσ2

w +α2(1+Mφ ρ)∥ AΓ ∥2 Tr[B]C2
v

1−ψ(α,ρ)
, (12)

t = 0,1, . . . .
Note, that the result of Theorem 4 is an accurate in the

sense that in typical cases inequality (12) transforms
into the equation when inequalities are replaced with
equalities in the Theorem 4 conditions.
The first term of Inequality (12) right side shows a

contribution of uncertainty about the initial data and
tends to zero exponentially with time.
It is interesting to analyze the second term. Bounded-

ness of disturbances, which is usually assumed in min-
imax filtering problems, leads to results whose accu-
racy is proportional to specific sizes of an uncertainty

set. Inequality (12) shows the unexpected novel fea-
ture of the randomized algorithm (to be more exact,
the algorithm with a randomized measurement process
when the current estimate is changed in the chosen ran-
dom direction). If the upper bound σ2

w of variance of
uncontrollable part of the process under study is suffi-
ciently small then it is possible to obtain small predic-
tion errors as compared with the level of an observation
noise Cv.

3 Randomized Control for Small UAV Under
Unknown Arbitrary Wind Disturbances

Consider a simplified model of the UAV flying. We
assume that it moves in a horizontal plane with a veloc-
ity of a and it is pushed by a wind with mean velocity
b to the direction θ . Data from GPS receiver comes
into a system trough the time interval δ , i. e. at time in-
stant Tt = T0 +δ t system gets a pair of numbers (xt ,yt)
which are measuring of the current position of (xt ,yt)
with some error (errxt ,erryt ) .
To control the UAV, i. e. to synthesize a sequence of

control actions on the actuators {ut}, it would be better
to estimate the unknown parameter θ⋆ ∈ R (the wind
direction) based on current measurements {(xt ,yt)}.
More precisely, let (A,B) be the goal point. At any

time instant Tt UAV is in the point (xt ,yt). We as-
sume that the elevators, ailerons, and the direction can
change the UAV motion course to the angle u and keep-
ing it constant throughout the time from Tt till Tt+1. At
this time interval the UAV motion in the direction of u
interferes with a wind with the constant speed average b
and an angle θt+1. Assuming a constant wind direction
θ ≡ θt , a series of successive measurements allows to
get the accurate assessment of the wind direction. The
optimal control is determined by the equation:

asinu −b sinθ = 0, (13)

when UAV moves directly from the point (xt ,yt) to
(A,B) (see Fig. 3). It follows easy from (13) that

u = arcsin
(

b
a

sinθ
)
. (14)

Figure 3. Goal direction, course, wind shift.

From the practical point of view the case a≫ b is very
interesting. For example, in the case of a glider dis-
cussed in [Amelin, 2010] cruising speed is a ≈ 20 m/s,
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and the range of wind velocities at which the glider is
commonly used is from 0 till 7 m/s (usually 2-3 m/s).
In this case we have

sinu ≈ u,

and the optimum angle of the course is

u =
b
a

sinθ = U (θ). (15)

In the case of changes wind directions the random na-
ture of the wind angle variation is often assumed:

θt+1 = θt +wt+1, (16)

where {wt} are independent, zero-mean and identically
distributed random variables:

E{wt}= 0, E{w2
t }= σ2

w < ∞. (17)

E{wi,w j}= 0, i ̸= j.

In order to optimize moving to the goal point it
is required at the time Tt to design an estimation
(prediction) algorithm for θt+1 based on observations
{(xi,yi)}

t
i=0 and previously chosen control actions

ui, i = 0, . . . , t − 1, which minimizes the mean square
deviation

E
{(

θt+1 − θ̂t+1

)2
}
→ min .

The estimation algorithm design. Using the above the-
oretic results we consider the randomized approach to
synthesis of control actions {ut} and compare it with
the algorithm without randomization based on the tra-
ditional Kalman filter [Levy, 1997].
For the evaluation of emerging of on-board navigation

system errors a small inertial system together with the
data of GPS receiver is used.
At the beginning of each iteration the course ut is cho-

sen and zero value for the gyro is set in this direction.
When UAV “is demolished” from the chosen direction
the inertial system “adjusts” the control mechanisms on
the interval [Tt ,Tt+1] so that to compensate this effect.
But anyway at the end of the interval [Tt ,Tt+1] a dis-
crepancy value ε sets when the new GPS data comes
and a new goal direction is recalculated. As a result the
gyro “adjusted” again, and the magnitude of this angle
is taken as the “residual” to clarify the current estimate
θ̂t+1 (see Fig. 4).
It is necessary to note that, if the UAV course “ad-

justed” on the whole interval {Tt ,Tt+1} depending on

Figure 4. “Residual” in the chosen course.

the deviation from the desired trajectory of a gyroscope
then it is not entirely correct to say that θt is the angle
of the wind direction. More precisely, θt is the angle
correcting exposure determined by the wind.
The new observation data (xt ,yt) form GPS system

allows to calculate the “residual”

εt = asinut −bsinθt + vt , (18)

with some noise vt which is determined an inaccuracy
of observations xt+1,yt+1,xt ,yt
If we assume that a ≫ b and admissible ut is small

enough: sinut ≈ ut , then we obtain the observation
model

εk = aut −bsinθt + vt , (19)

which “suggests” the following randomized algorithm:

1. To choose a sequence (called as earlier random-
ized trial perturbation) ∆n of independent, identi-
cally distributed (i.i.d.) random variables which
are equal to ±β with same probabilities 1

2 .
2. To form control action ut by the rule:


ut = ūt−1 +∆t ,

θ̂t+1 = θ̂t −α∆tεt ,

ūt = U (θ̂t+1),

(20)

where ū0 = 0, θ̂0 = 0, α, β > 0 are constants,
U (·) is determined by (15).

The prediction algorithm for θ̂t+1 coincides with the
randomized algorithm (16) with A = Γ = 1, and for the
ut syntheses, in fact, encouraged to use the strategy (2)
with s = l = N∆ = 1 and Ut(·) = U (θ̂t+1) from (15).

4 Simulation
The efficiency of the algorithm (20) was tested by sim-

ulations in comparison with the estimates which are de-
livered by Kalman filter (see [Kalmal and Bucy, 1961])


ut = ūt−1,

θ̂t+1 = θ̂t −Ktεt ,

ūt = U (θ̂t+1),

(21)

Kt =
γt−1

1000
3 + γt−1φ2

t−1
,
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γt = γt−1 −
φ2

t−1γ2
t−1

16
3 + γt−1φ2

t−1
+

64
3
, γ0 = 0,

and by LMS algorithm (see [Ljung, 1999])


ut = ūt−1,

θ̂t+1 = θ̂t −αεt ,

ūt = U (θ̂t+1).

(22)

Measurements in the computer simulation were per-
formed with an interval of time δ = 2 c as an aver-
age delay time GPS module data update, the process
θt is observed in the time interval from 1 till 250;
σw = 8/

√
3. Flight plan is x0 = 0,y0 = 0,A= 5000,B=

5000. The initial wind angle is θ0 = 30 with respect to
the initial flight course. The selected coefficients are
α = 0.1, β = 0.01.
Figures 5–7 show the comparative behavior of path

trajectories corresponding to the three above mentioned
algorithms in typical cases for three different kinds of
noises

Figure 5. Paths under random noises vt = 10 ·(rand() ·4−2).

Figure 6. Paths under irregular noises vt= 0.1 · sin(t)+19 ·
sign(50− t mod 100).

It is known that the Kalman filter (21) gives optimal
estimates in the case of the Gaussian independent noise
in the observation. Method (22) is sufficiently effec-
tive under zero-mean independent disturbances, what
is why the behavior of the estimates is generated by al-
gorithms (21), (22) is good under zero-mean random

Figure 7. Paths under a constant noise vt= 20.

disturbances despite a high level of noise in the obser-
vations (see Fig. 5). In the situations with an unknown
constant noise or under a zero mean but not “rich”
enough the mean values of the errors of algorithms (21)
and (22) are comparable with a squared noise level (see
Fig. 6, 7). At the same time the average level of er-
rors for estimates of the randomized algorithm (20) is
almost the same in all three situations, and it is sev-
eral times better than the squared noise level. Table 1
shows the final results for the mean error values in typ-
ical computer experiments.
Table 1.

Noise vt (20) (21) (22)
10 · (rand() ·4−2) 41.36 38.15 42.65
0.1 · sin(t)+
+19 · sign(50− t mod 100) 55.40 197.64 212.45
20 45.15 276.35 199.48

5 UAV for Multi-agent Group
In the future work we plan to use above theoretical

results in our practical project: multi-agents group of
UAV [Amelin, 2010], [Amelin, 2011].
For our UAV-agent we use a model of the lung glider

“PAPRIKA”. It is 1.2 m in length, 2 m wing span, 2-
2.1 kg max take of weight, 600 g payload, 40–120 km/h
velocity and 200 km range. We use the control system
architecture with three levels.
Autopilot “Paparazzi” is a lower level. Autopilot is a

set of devices with a microcontroller with real-time sys-
tem. The main task of the autopilot is to control the ac-
tuators (servos, engine, additional equipment) based on
given flight program and data from sensors (inertial, in-
frared sensors, pressure and velocity sensors, etc). On
the middle layer the microcomputer Gumstix is used. It
is 17mm× 58mm× 4.2mm sizes, Linux operating sys-
tem, ARM Cortex-A8 processor with 600 Mhz clock
frequency, 256 MB RAM and 256 MB NAND Flash.
Microcomputer is the main on board device in the con-
trol system of UAV-agent. Interoperability between the
main microcomputer and autopilot is organized by SIP.
The upper level is a base station.
Connection between microcomputers of different

UAVs carried out due to FM radio with a frequency
of 2.4 GHz and the communication protocol 802.11 n
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(Wi-Fi) which uses technology that connects the two
nearest channels into one. Thus microcomputers in the
UAVs will be able simultaneously receive and send in-
formation to each other. Communication with the base
station carried out due to separate channel, or via GPRS
over GSM modem. A GSM modem can be easily inte-
grated with a microcomputer, but data packets should
be compressed.
Due to the small UAVs weight the takeoff is carried

out from human hands or from a catapult. Landing is
carried out either through the built-parachute or due to
“takeover of control” of the operator to manual control.
One of the important topic for the development of

control UAVs programs is an optimization flight algo-
rithms. One of possibilities is to use above described
randomized algorithms. Other way is to accumulate en-
ergy and increase the flight range by using the thermal
updrafts which are formed in the lower atmosphere due
to disruption of warm air from the surface when it is
heated by sunlight [Antal, Granichin and Levi, 2010].

6 Conclusion
This paper presents new approaches for constructing a

confidence set of unknown parameters of a linear scalar
control plant and for the prediction of varying param-
eters. From the theoretical point of view an impor-
tant feature of suggested procedures is that they operate
without any significant assumptions about the external
noise. It is also of vital importance from the practical
point of view since in practical applications when it is
difficult to obtain a priori knowledge about the noise
characteristics.
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