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Abstract
Load oscillations of container cranes reduce the con-

tainer handling throughput and need to be controlled in
order to minimize load swing. The proposed controller
is motivated by a novel reduced normal form technique
that incorporates resonant coupling into the underac-
tuated system of load oscillations and hoisting mecha-
nism. Results from simulations prove the functionality
of the controller and motivate its implementation at the
container crane test stand.
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1 Introduction
In 2009 the containerization (transported goods in

standardized containers throughout the world) has
reached a value of almost 97%. This number indicates
that nearly all transported goods have to be handled at
least two times by container cranes, if they are shipped
by sea route. This huge amount of goods carried by
container vessels on long distance routes, e.g. from
Asia to North America or to Europe gives many rea-
sons for increasing the efficiency of the transportation
process.
During the last decades the vessels became larger

and wider and were able to carry more containers per
cruise. The first container vessel in the world for
shipping ISO–containers was the Ideal–X operated by
the Sea–Land Corporation with a capacity of 58 TEU
(twenty foot equivalent units) in 1956. Today the

largest vessels (Emma–Maersk–class) have a capacity
of 15,500 TEU, vessels with a capacity of 18,000 TEU
were ordered by the Maersk Line in 2011. An end of
this development is not predictable at the present time.

1.1 Container cranes
The increase of the efficiency by using longer and

wider vessels to carry more containers per cruise leads
to a loss of efficiency during the loading and unload-
ing procedure at the port. The dimensions of the con-
tainer cranes grew with the growth of the vessels. A
sketch of a modern container crane that is used at the
Port of Hamburg at the Altenwerder Terminal is shown
in Fig. 1. This provides a waterside outreach of about
Dws = 61m for vessels, which can be can be han-
dled by, for example, Emma Maersk. The maximum
hoisting distance is H1 = 62m, with a distance of
H2 = 39m above the water line. When transporting
a container from the quay–side to its designated posi-
tion on the vessel an increase of trolley traveling dis-
tance automatically extends the duration of container
handling. Faster movements with higher acceleration
rates of the trolley favor the occurrence of load oscil-
lations. Thus, the extended trolley traveling distance
and load oscillations decrease the number of container
moves per hour at the port. Simultaneously, it reduces
the ship loading (unloading) efficiency and increases
berth cost.
During the last decades, a lot of effort has been put

into reducing load swing by controlling the motion of
the container crane trolley. A broad overview of current
trolley control schemes is given by [Abdel-Rahman et
al., 2003]. It was pointed out that only load swing in
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Figure 1. Sketch of the container crane in operation.

the plane of the trolley direction and the gravitational
axis can be suppressed with the control input, while
the rotational motions of the load or load swing in the
plane perpendicular to the trolley direction cannot be
affected by trolley motions. Moreover, every motion
of the trolley effects the crane operator whos cabin is
mounted on the trolley.
In order to overcome these disadvantages this paper

proposes a novel normal form approach focusing on
internal resonances of the hoisting mechanism and the
load swing. No control input to the trolley is required
to reduce spatial load swing. After this introduction we
start by stating a brief description of the normal form
representation of a given system, followed by the re-
duced normal form, which is the basis of the resonant
coupling controller.

1.2 Container crane test stand
The developed control scheme will be implemented,

applied and validated by experiments with the con-
tainer crane test stand at the Institute of Mechanics and
Ocean Engineering of Hamburg University of Technol-
ogy. The test was designed to create an experimen-
tal base for various research topics on dynamics and
control theory of mechatronic systems. The test stand,
shown in Fig. 2 was built in 2009 and is mounted di-
rectly below the concrete ceiling construction to fit the
laboratory’s dimensions. The hoisting height is about
11m and the trolley traveling distance is about 13m
with a length of the tracks of 15m. Compared to a
container crane described earlier and shown in Fig. 1
with a land- and seaside trolley traveling distance of
about 80m and a maximum hoisting height of 65m
the test stand is designed at a scale of approximately
1:6. The presented results within the experimental val-
idation section were completely taken at the container
crane test stand.

Figure 2. Container crane test stand.

1.3 Normal forms
The system under consideration, container crane load

swing, is represented as an autonomous nonlinear con-
trol system in the form

ẋ(t) = b(x(t)) + σ(x(t))u(t), (1)

where x ∈ Rn, u ∈ Rnc , b, and σ are real analytic
functions. Using a Taylor series this formulation be-
comes linear in F̃ and G̃ plus remaining nonlinear parts
b̂(x) and σ̂(x)u:

ẋ = F̃ x+ G̃u+ b̂(x) + σ̂(x)u. (2)

A near-identity change of coordinates Φ(y) transforms
the original system (2) into normal form representation
(refer to [Arnold, 1983] for further details)

x = Φ(y) = y +Φ[2](y) + Φ[3](y) + . . . , (3)
ẏ = Fy +Gu+ b(y) + σ̄(y)v, (4)

which only contains normal form nonlinear parts b(y)
of the transformed system. Other nonlinearities have
been erased by the transformation (3). The superscript
refers to the order O(k) of the corresponding nonlinear
term. The input states as

u = α[k](y) + β[k−1](y)v + v. (5)

Two homological equations (see [Krener and Kang,
1990] and [Talwar and Namachchivaya, 1992]) can be
found from the transformation (3) together with (2)
to derive the transformation Φ[k](y) itself, the normal
forms b[k](y), control terms σ̄[k−1](y), and input pa-
rameters α[k](y), β[k−1](y) up to order k.
Similar investigations have been carried out by [Kha-

jepour and Golnaraghi, 1994], [Khajepour et al., 1997]
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and [Krener et al., 2001] focusing on the classical nor-
mal form of similar systems. It requires a large amount
of calculations even for low order systems. In the fol-
lowing section a method with reduced cost of calcula-
tion is outlined with the aim to identify the governing
nonlinearities.

2 Reduced normal forms
Decomposing the original state x

def
= (xu, xc)

T into
uncontrollable xu ∈ Rnu and controllable variables
xc ∈ Rnc leads to the new system based on (2)

(
ẋu

ẋc

)
=

[
Ã 0

0 C̃

]
︸ ︷︷ ︸

F̃

(
xu

xc

)
+

[
0

B̃

]
︸ ︷︷ ︸

G̃

u+

+

(
f(xu, xc)
g(xu, xc)

)
︸ ︷︷ ︸

b̂

+

(
ν(xu, xc)
µ(xu, xc)

)
︸ ︷︷ ︸

σ̂

u. (6)

Transformation (3) is decoupled in a similar manner,
taking into account uncontrollable normal form modes
ξ ∈ Cnu and controllable normal form modes η ∈
Cnc . Notice the change from real to complex nota-
tion x → z ∈ Ck and further to normal form notation
z = Φ(y), y = (ξ, ξ̄, η, η̄)T ∈ Ck. This benefits in less
system equations due to the complex conjugate equa-
tions. It now states z = y +

(
h[k](y), φ[k](y)

)T
and

together with the homological equations from [Talwar
and Namachchivaya, 1992] and (6) one derives

f[k](ξ, η) = Ah[k](ξ, η)− ∂h[k]

∂ξ
(ξ, η)Aξ

−∂h[k]

∂η
(ξ, η)Cη + f [k](ξ, η), (7)

g[k](ξ, η) = Cφ[k](ξ, η)− ∂φ[k]

∂ξ
(ξ, η)Aξ

−∂φ[k]

∂η
(ξ, η)Cη + g[k](ξ, η)

+Bα[k](ξ, η), (8)

ν̄[k−1](ξ, η)v = −∂h[k]

∂η
(ξ, η)Bv

+ν[k−1](ξ, η)v, (9)

µ̄[k−1](ξ, η)v = −∂φ[k]

∂η
(ξ, η)B v

+Bβ[k−1](ξ, η)v

+µ[k−1](ξ, η)v. (10)

A further decomposition of the k-th order nonlinear
terms of the transformation into monomials of uncon-
trollable, controllable and mixed modes (|m|+ |l| = k,

φ[k] likewise) is employed:

h[k](ξ, η) = h(m,0)(ξ) + h(m,l)(ξ, η)

+h(0,l)(η), (11)

with

h(m,l)(ξ, η)
def
=

∑
k

nu∑
i

h
(m,l)
i:m1...mnu l1...lnu

ξm1
1 . . .

. . . ξ
mnu
nu ηl11 . . . η

lnc
nc ei.

Inserting the decomposed transformation (11) into (7)
through (10) yields for k = 2 ten equations. Out of
these ten equations (equivalent to classical normal form
derivation) e.g. only three have to be taken into account
when deriving the reduced normal form of the planar
elastic pendulum (representing the underactuated sys-
tem):

∂φ(2,0)

∂ξ
(ξ)Aξ − Cφ(2,0)(ξ)−Bα(2,0)(ξ)

= g(2,0)(ξ)− g(2,0)(ξ),

(12)

∂h(1,1)

∂ξ
(ξ, η)Aξ +

∂h(1,1)

∂η
(ξ, η)Cη

−Ah(1,1)(ξ, η) = f (1,1)(ξ, η)− f(1,1)(ξ, η),

(13)

∂h(1,1)

∂η
(ξ, η)B = ν(1,0)(ξ)− ν̄(1,0)(ξ). (14)

Based on the given system (6) the remaining conditions
(12) through (14) are solved for the normal form non-
linearities g[k] and f[k], the near-identity terms h[k] and
φ[k] as well as the control parameter α[k]. The normal
form of each subsystem is obtained individually and
this implies the possibility to transform only the con-
trollable modes (h[k] = 0) into normal form represen-
tation. The resulting complex normal form equations
of the partly transformed pendulum system up to order
O(2) state:

ẏ =

[
A 0
0 C

]
y +

(
f [2](y)
g[2](y)

)
+

[
0
B

]
u. (15)

3 Resonant coupling controller
The resonant coupling controller is based on the 1:2

coupling of the underactuated uncontrollable modes
with the actuated controllable modes. Assuming A =
diag {−iω, iω} and C = diag {−iωd, iωd} to represent
both subsystems as well as

G =

(
0
B

)
, B =

[
1 i
1 −i

]
∈ C2×2 (16)
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and

ν(ξ, η) =

(
0
0

)
, u =

(
u1

u2

)
, (17)

the normal form of the controllable subspace (k = 2) is
identified as (suppressing the complex conjugate equa-
tion of ˙̄η)

η̇ = −iωdη + g
(2,0)
1:2000ξ

2 + u1 + iu2, (18)

indicating the desirable form of the controlled subsys-
tem. Only nonlinearities in the form of resonant cou-
pling monomials ξ2 are permitted in order to dissipate
energy from the uncontrollable modes. Hence, the de-
signed controller considers damping (k), coupling en-
forcement (e), and α[k] to erase the non-normal form
monomials:

uη̇(ξ, η) = u1 + iu2 = kη + ieξ2 + α[2](ξ, η). (19)

Since (18) is the desirable form of the controllable sub-
system one has to assure the physical system can be
brought to such form. Thus, the original controllable
subsystem in complex coordinates

żc = −iωdzc + g
(2,0)
1:2000z

2
u + g

(2,0)
1:0200z̄

2
u

+g
(2,0)
1:1100zuz̄u + u1 + iu2 (20)

is modified by the control input (19) by use of the im-
plicit function theorem. After choosing α[2] to erase
non-normal form monomials one derives the final form
of the control input in complex states as:

użc(zu, zc) = kzc︸︷︷︸
u1

+ iez2u − g
(2,0)
1:0200z̄

2
u − g

(2,0)
1:1100zuz̄u︸ ︷︷ ︸

iu2

.

(21)

The controller in (21) is designed for the case of
ω : ωd = 1 : 2 resonance coupling. Further details
regarding the derivations are collected in [Rapp et
al., 2011]. Expanding the controller design to spatial
domain (1:1:2 coupling) incorporates 1:1 and 1:2 reso-
nances respectively. In general 1:1 resonant coupling
investigation reveals coupling monomials of order
O(3) ([Nayfeh and Mook, 1979]). The normal form
coordinates are extended to y =

(
ξ1, ξ̄1, ξ2, ξ̄2, η, η̄

)T
in order to include two uncontrollable (deflection)
modes and one controllable mode. Cubic nonlinearities
with respect to 1:1 resonant coupling can be identified
in a similar manner as the quadratic resonant terms for
1:2 resonance.

The aforementioned controller is implemented to con-
trol the underactuated system representing the hoisting
device of a container crane (trolley, ropes, container).
The control is applied to a general hoisting maneuver
(l0 ≈ 9m, l̇ref = −0.1m/s, zu,0 = 0, żu,0 ̸= 0, zc,0 =
0, żc,0 = 0). Figures 3 and 4 illustrate the simulation
results of the load deflection as well as load trajectory
without and with control of the hoisting process. The
upper graph of Fig. 3 correlates with the left graph of
Fig. 4 and vice versa. During constant hoisting, the de-
flection increases with decreasing rope length. In case
of controlled hoisting by (21), the shape of the trajec-
tory changes (Fig. 4, right) due to the input. As a re-
sult the deflection decreases as well as the rope length.
The trolley position is not affected at all during the de-
scribed hoisting maneuver. The details of the theoret-
ical aspect of the reduced normal forms technique is
presented in [Rapp et al., 2011].

Figure 3. Load deflection without (top) and with (bottom) control.

Figure 4. Load trajectory without (left) and with (right) control.
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4 Experimental validation
The experimental validation of the reduced normal

form control scheme is carried out at the container
crane test stand at the laboratory of the Institute of Me-
chanics and Ocean Engineering, Hamburg University
of Technology, Germany.

4.1 Container crane test stand
A sketch of the container crane test stand is shown in

Fig. 5. Two parallel rails for the trolley are mounted
directly at the ceiling to form the guiding track (hoist-
ing height: 11m). The track is 15m long, which allows
a traveling distance of about 13m. The rails consist of
an aluminium box section (120mmx120mm) who carry
one hardened steel rod with a diameter of 25mm on
both sides to form a linear guidance. Eight roller el-
ements are mounted on the trolley’s edges which join
into the steel rods and carry the weight of the trolley.
The actual mass of the model container is 30kg, al-
though, the stand is designed for a maximum payload
of 150kg.

Figure 5. Sketch of the container crane test stand.

Figure 6. Trolley with winches and rope guidance.

The trolley, details are shown in Fig. 6, is driven by
one controller-based synchronized Siemens 1FT7034
servo drive on each side to provide a momentum free
driving force (maximum of 600N), which results in a

maximum trolley acceleration of 2m/s2 for a 30kg pay-
load and a trolley mass of 270kg. The maximum trolley
speed is 3m/s, compared to the maximum speed of a
real trolley of about 4m/s. While real container cranes
contain two winch motors to hoist the containers, the
test stand holds four Siemens 1FT7044 servo drives to
control each cable independently. The aluminium cable
drums are mounted directly on the output shaft of the
servo’s planetary gearbox. On each top corner of the
container a pulley is mounted, just like a real container
spreader, hence, the loose end of the cable runs from
the drum, passes two defector rolls of the cable guid-
ance system (detail A of Fig. 6), continues to the con-
tainer’s pulley, gets deflected upwards, passes another
pair of deflection rolls and is fixed at the force trans-
ducer (detail B). Using this kind of cable guidance, the
kinematics of the model container are identical to the
real container. The two inner deflection rolls handling
the vertical parts of the cable are mounted on a com-
mon frame which is pivoted by roller bearings. This
design forces the rolls to follow the cable to the side,
when the container swings perpendicular to the trol-
ley’s track and prevents the cable from jumping off the
roll at high hoisting speeds. The cables are synthetic
Dyneema cables of 1mm diameter, which are normally
used for kites. The stiffness of the pre-stretched ca-
ble equals the stiffness of a steel cable, but the damp-
ing in longitudinal direction is much better. This is an
important benefit compared to steel cables, as the fre-
quencies of the first longitudinal and bending modes of
the reeled out cable is in the same region as the fre-
quency of the load oscillations, so filtering of these dis-
turbances measured by the force transducers is not pos-
sible. The drawback in using Dyneema cables is in the
higher amount of servicing the test stand, as the cables
have to be replaced more often for safety reasons.

The maximum hoisting speed is 3m/s, which is the
same speed real cranes are operated at. The winches
and the trolley are controlled by a Siemens SIMOTION
D435 controller, combined with Siemens SINAMICS
S120 power electronics components. For flexibility
reasons, controllers, the processing of the measurement
data and the human-machine-interface is set up using
National Instrument’s LabVIEW, running on a PC
based real-time controller. On the basis of this concept
the controllers are developed in three steps: design and
simulation using MATLAB, translation of MATLAB
code to C-code and building a DLL file, integration of
the DLL into the LabVIEW environment using a des-
ignated data interface. The loop rate of the LabVIEW
controller is 200Hz, which is limited by the Profibus.
Via Profibus network the force measurements, rope
length and rope velocities of each hoist, plus the
position and velocity of the trolley are transfered to
the LabVIEW controller, routing feedback signals to
the anti-swing controllers. Additionally, each axis’ set
point is sent to the SIMOTION controller. There are no
container position measurements to be directed to the
controller, because the camera systems on real cranes



CYBERNETICS AND PHYSICS, VOL. 1, NO. 1, 2012 47

are not capable of tracking the container position at
the test stand’s scale. The only camera that is used
for offline validation measurements of the load sway
estimator described in the following section. Therefor
a 100Hz C-MOS camera is used, which captures the
scene within the plane of trolley motion and gravita-
tional axis at a resolution of 640x480 pixel. For getting
better contrast four LED–illuminated balls are attached
to one side of the container. These bright markers are
sensed by the camera, whereas no further objects in
the lab are sensed and no special illumination of the
scene is needed. After extraction of the coordinates
of the four bright spots, the planar position of the
container is calculated using an inverse nonlinear
camera model calibrated by the method of [Lenz,
1987]. The resulting position data is collected to be
compared with estimated position data for validation
purposes.

4.2 Load sway estimation
The test stand only holds a limited number of sen-

sors to acquire information about the system’s behav-
ior. Namely, the rope forces Fi (i = 1 . . . 4) are mea-
sured but no data about the deflection of the container
is available. In order to evaluate the deflection as well
as the rate of change of deflection of the container
xu = (ϕ, ϕ̇)T with respect to the constant trolley po-
sition a state observer is employed. Figure 7 demon-
strates a general control system, which contains an ob-
server to predict the states of the system. On the ba-
sis of the predicted states the control can be evaluated
and applied to the real system. The sensor takes data
samples, which are compared with predicted samples
as part of the observer. Based on the noise variances
and the system state the observer feedback gain is cal-
culated to scale the discrepancy between predicted and
measured sensor data. The scaled signal is fed back to
the system model to adjust the state variables depend-
ing on the discrepancy and the state as a correction step.
The choice of observer outline is dominated by the

characteristics of the system and sensor model. Both
are described in detail by [Theis, 2010]. The author
points out that fully nonlinear models are required to
properly evaluate the response. Thus, an Unscented
Kalman Filter (UKF) is chosen for implementation in
order to meet these requirements (see [Julier et al.,
1995] and [Theis, 2010]). The UKF is based on an
unscented transformation introduced by [Julier, 2002],
which approximates the nonlinear system and sensor
equations by means of stochastic processes. As a re-
sult the predicted states are the mean values of deflec-

tion ϕ̂ and rate of change of deflection ˙̂
ϕ together with

its standard deviations (σϕ̂, σ ˙̂
ϕ

). This technique pro-
vides benefits in terms of low installation cost for sen-
sors, robustness and real-time capability. Being able to
acquired zero-delay state information clearly enhances
the possibility to assign system control. Some obser-

Figure 7. Control system with observer.

vation results are displayed by Fig. 8 along with the
validation data from camera measurements. The pre-
dicted states correlate with the camera measurements,
hence, the results of the control are given in terms of
the predicted deflection state ϕ̂.

Figure 8. Validation of UKF with camera.

4.3 Results
The response of the real system with respect to a

control law based on 1:2 internal resonance is inves-
tigated. As a first step, a simplified resonance cou-
pling control scheme is employed. The hoisting manip-
ulation control from [Bockstedte and Kreuzer, 2005]
imposes a spring-mass-dashpot behavior on the con-
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trollable mode xc = (l − l0, l̇ − l̇ref )
T of the elas-

tic pendulum. The spring constant c is tuned to meet
the resonance condition ωd =

√
c = 2ω. The dash-

pot dissipates energy of the controllable mode, which
is transfered through the resonance coupling and origi-
nates from the load deflection.
Fig. 9 contains the deflection (uncontrollable mode,

upper plot) as well as the elongation of the pendulum’s
rope (controllable mode, lower plot). The controller
starts at an initial deflection of approximately 10◦. In-
stantaneously, (l − l0) increases up to the point when
the influence of the dashpot dominates its response (≈
6s). The frequency matches ωd, which is by definition
twice the load swing frequency. Due to the controlled
elongation of the rope, the deflection is decreased by
resonant coupling of both modes. Within 20s the abso-
lute deflection is reduced from almost 20◦ to less than
10◦.

Figure 9. Control without hoisting: deflection and elongation.

So far, the system has been fixed at a reference length
l0 of the controllable mode. Next, a hoisting process
is examined. The reference length of the rope states
lref (t) = l̇ref t+ l0. Two cases are created: an initially
deflected pendulum is hoisted without (1) and with (2)
hoisting manipulation. The configuration parameters
of the test cases are set as l0 = 7m, l̇ref = −0.2m/s,
lmin = 4m.
The first case is depicted in Fig. 10. It can be found

to increase the deflection (upper plot) due to constant
hoisting without manipulation (lower plot). During
this process, the length continuously decreases whereas
the oscillation frequency increases until the hoisting is
stopped at minimum length lmin. Employing the res-

onance coupling control scheme from [Bockstedte and
Kreuzer, 2005] shows superior behavior, see Fig. 11.
The deflection (upper plot) is dramatically reduced dur-
ing the hoisting process. The controller manipulates
the hoisting velocity l̇ with respect to the current states
of the system. It increases the hoisting at maximum
deflection whereas the velocity decreases around the
equilibrium position, leading to the depicted trajectory
of the lower plot in Fig. 11.

Figure 10. Hoisting without control: deflection and trajectory.

As mentioned, the control law follows [Bockstedte
and Kreuzer, 2005]. A comparison of the employed
control law to (21) shows some correlation. The
spring-mass-dashpot (smd) formulation contains only
użc,smd = u1 = kzc but does not contain the cou-
pling disturbance rejection α[2] nor coupling enhance-
ment e. This leads to the fact that the implemented con-
trol scheme at the container crane test stand so far only
offers limited insight in the effectiveness of the reso-
nant coupling control. Nevertheless, Fig. 12 empha-
sizes through simulation results the possible improve-
ment of the resonant coupling control over the spring-
mass-dashpot control law. Although the control input is
reduced (lower plot), the deflection is reduced quickly.
Whereas the control law from [Bockstedte and Kreuzer,
2005] only slowly decreases the oscillations.

5 Conclusion
The reduced normal form is much more transparent

than the classical normal form derivation. It is success-
fully applied to a general autonomous nonlinear con-
trol system with multiple inputs ([Krener et al., 2001]
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Figure 11. Hoisting with control: deflection and trajectory.

Figure 12. Resonant coupling control vs. spring-mass-
dashpot control: deflection and elongation.

uses a single input). Energy dissipation from the under-
actuated system is directly revealed, thus, the reduced
normal form identifies the coupling monomials of the
controllable subsystem of a general nonlinear control
system. Using this knowledge the designed controller
successfully dissipates energy from the uncontrollable
subsystem by 1:2 resonant coupling. The results are
validated at the container crane test stand at the Insti-
tute of Mechanics and Ocean Engineering. The authors
are aware of the fact that, although, the cost of calcula-

tion of the reduced normal form is decreased, the pre-
sented method is only valid for a limited range of prob-
lems due to nature of normal forms. Hence, resonant
coupling control is effectively applied to the container
crane test stand and will shortly be extended to the con-
trol law (21) for further improvement of load swing re-
duction.
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