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Abstract 
A new semi-empirical model is presented for the 
vortex-induced vibration of structures. The lift force 
on a structure is assumed to consist of two 
components. The first component is a non-linear 
force that has a polynomial dependence on the 
velocity of the structure. The second component is a 
harmonic force with the Strouhal frequency. Only the 
crossflow motion of the structure is considered. The 
model predictions are compared with experimental 
results available in literature to show good qualitative 
agreement. 
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1    Introduction  

Many flexible engineering structures, such as marine 
cables towing instruments, flexible risers used in 
petroleum production and mooring lines are prone to 
Vortex Induced Vibration (VIV), see [ Blevins 1977, 
Iwan 1981, Alexander 1981, Ramberg&Griffin 1976, 
Vandiver 1991, Newman&Karniadakis 1996]. The 
VIV can have considerable amplitude and 
significantly accelerate fatigue of the structures.  
If the structure (or its segments) vibrates at nearly the 
forcing frequency,  the structure and the wake will be 
in the state of ”synchronization” or lock-in as termed 
in the classical work of Bishop and Hassan 1964. 
This state occurs in a narrow band of cylinder 
oscillation frequencies which includes the Strouhal 
frequency. About three decades ago, several 
investigators began employing nonlinear oscillator 
equations of the van der Pol type to represent the 
fluctuating lift force acting on the cylinder 
[Hartlen&Currie 1970, Skop&Grifffin 1975, 
Iwan&Blevins  1974]. The modeling was continued 
in [Skop&Balasubramanian 1997, Wang et al. 2003]. 
Their representation for the lift force was based on 

the similarity between the vortex-shedding process 
and the behavior of nonlinear oscillators rather than 
on the underlying fluid dynamics. For other types of 
the modeling of VIV process see a review of 
[Gabbai& Benaroya 2005].  
Many fundamental features of VIV of an elastic 
cylinder are still not fully understood. For example, 
what is the maximum possible amplitude attainable 
for a cylinder undergoing VIV, for conditions of 
extremely small mass and damping? What modes of 
structural response exist, and how does the system 
jump between the different modes? The objective of 
this paper is to answer the above questions using an 
analytical approach and simple numerical 
computations with the help of a new semi-empirical 
model of the lift force. In this model, the lift force on 
the structure resulting from the shedding process 
consists of two components. The first component is a 
force that depends non-linearly on the velocity of the 
structure across the flow. The second component is a 
harmonic force with the vortex-shedding frequency. 
Only the cross-flow vibration of the structure is 
considered. 
 
2    A fluid force model 
 
Consider a flexible, circular cylindrical structure 

subjected to a uniform cross-flow of velocity 0V  and 
mass density ρ . 
 
2.1. Formulation 
 
For long structures where tension dominates bending, 
the PDE governing geometrically linear transversal 
vibrations can be written in the form: 

0( ) ,t t y t y xx yM u u T u Fς∂ ∂ + ∂ = ∂ +   (1)                                    
where  c addM m m= +  is the mass per unit length 
of the structure including the added fluid mass, 

addm is the added mass per unit length, cm is the 

mass of the structure per unit length, yu  is the 
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transversal displacement, ς  is the structural damping 

, 0T is the tension in the structure (assumed to be 
constant), F is the fluid force.  
It is proposed to represent the fluid force as follows: 
 

2 30.5 ( / ( / )0 1 0 3 0
5( / ) sin( )),5 0 0

F c dV b u V b u Vn y yt t

b u V f ty st

= − ∂ + ∂

− ∂ + +

ρ

ω β

  
(2) 

 
 
where d is the diameter of the structure, 

nc , 1 3 5, ,b b b are coefficients to be found from  

experiments, 0f is the amplitude of the periodic part 

of the force, sω is the Strouhal angular frequency; β  
is the phase of the periodic force. Eq. (1) should be 
supplemented with the boundary conditions. In the 
model, the force F acting on the structure in the cross 
flow direction as a result of the shedding process 
consists of two components. The first component is a 
force depending non-linearly on the velocity of the 
structural motion in the crossflow direction. The 
force is such, that at small velocities it adds to the 
hydrodynamic resistance force and is directed 
opposite to the velocity, this insures the structural 
stability. With the velocity rise the force becomes 
codirected with the velocity, which leads to the 
growth of the vibration amplitude.  But with the 
further velocity rise the force becomes again directed 
opposite to the velocity, which limits the vibration 
amplitude. Such a nature of the force dependence on 
the cable velocity is proved experimentally for 
marine cables [ Devnin 1975]. With the flow velocity 
rise the frequency of the force grows, and when it 
becomes close to the first natural frequency of the 
structural vibration, the intensive eigenmode 
vibration is exited. The non-linear force/velocity 
dependence leads to the limitation of the oscillation 
amplitude.  The structure gets into a self-oscillation 
regime with the mode close to the eigenmode. With 
further increase of the flow velocity, the force 
frequency continues to grow, and when it is 
approaching to the second natural frequency, the 
intensive vibration is exited at the second eigenmode. 
The self-oscillation regime with the mode close to the 
first eigenmode ends and the structure gets into the 
self-oscillation regime with the mode close to the 
second eigenmode.  With the further increase of the 
velocity the jump to the third natural frequency 
occurs and, correspondently, to the third eigenmode.  
 
In Eq.(2) the non-linear component of the force 
differs from the model of classical forced Rayleigh-
type oscillator by the additional term 5

0( / )t yu V∂ and 
the signs in front of the linear and the first non-linear 
terms. The term 5

0( / )t yu V∂  allows describing the 
stabilization of the structural vibration when the 
vibrating structure velocity rises. 
The second component of the lift force is a harmonic 
force with the vortex-shedding frequency. It reflects 

the following experimental result: at small values of 
the oscillation amplitudes the lift coefficient varies 
according to the sinusoidal law [Devnin 1975].  
Inserting Eq. (2) into Eq.(1), one obtains: 
 

0
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(( ) )

0.5 ( / ( / )

( / ) sin( ));

t c add t y t y xx y

n t y t y

t y s

m m u u T u

c dV b u V b u V

b u V f t

∂ + ∂ + ∂ = ∂ +

+ − ∂ + ∂
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(3) 

  
    

Eq. (3) allows to take into account the possible 
variation of the added mass of the fluid in time 
according to the variation of reduced 

velocity 0
r

VV
dν

= ,where  ν is natural frequency of 

the structure. The dependence of added mass on time 
and on the reduced velocity for small mass ratio 
cylinders was studied experimentally in [Sarpkaya 
1979,Vikestad at al.2000]. The obtained results show 
that there are significant cycle-to cycle variations in 
added mass and vibration period . The added mass 
dependence on time was observed for 4rV = . Once 

the lock-in commences, at approximately 4rV = , 
then the natural frequency of the cylinder increases 
with increasing reduced velocity, enabling lock-in to 
persist, in this case up to approximately 12rV = , 

because the mass ratio 2/cm d Lµ ρ= was quite 

low ( 3µ = , L is the length of the cylinder).On the 
basis of results of [Vikestad at al.2000], in the present 
paper the behaviour of the system is described in the 
following way. The model of the system behaviour in 
the upper and lower branches of the lock-in range 
takes into account the dependence of the added mass 
on the reduced velocity and outside that regions will 
not. It was also shown by [Vikestad at al.2000] that 
the added mass is influenced by components of the 
cylinder displacement at frequencies which are 
different from the natural vortex-induced vibration 
response. This fact is not taken into account in this 
paper, but will be shortly discussed in the conclusion. 
Analytical research of the elastic structure dynamics 
described by Eq. (3) has not been performed in the 
past. Such a research can be carried out by 
perturbations methods and averaging techniques. The 
present paper presents preliminary results of such a 
research.  Let us first consider the structural 
behaviour when the added mass is assumed to be 
constant. Then, Eq. (3) can be reduced to the equation 
for a single degree of freedom (SDOF) oscillator. 
SDOF models use a single ordinary differential 
equation to describe the behaviour of the structural 
oscillator (see for references [Gabbai& Benaroya 
2005]. Such a model can be obtained for elastic 
systems that could be described by the one 
dimensional damped wave equation (e.g. wires, 
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cables). The results obtained by [Skop&Grifffin 
1975] indicate that for a particular pure response 
mode, the equations describing the system response 
reduced to those obtained for a rigid cylinder. Using 
Galerkin procedure, and seeking the solution of 

Eq.(4) in the form 
0

( ) ( )y i i
i

u y t Z x
∞

=

= ∑ ,one can 

come to the solution of the infinite system of ODES  
for determining time dependent coefficients )(tyi . 
Neglecting interaction of modes, which is of course, 
the strong assumption, and dividing both parts of Eq. 
(3) by η , one has the following equation for   i-th 
mode: 

                                         
2

2
2 ( , )i i

i i i
d y dy y F y t
dt dt

η+ + Ω = &          (4)                   

 
where  η   is the damping coefficient, iy is the modal 
coefficient of the transverse displacement of the 
elastic system, ( , )iF y t& is the hydroroelastic forcing 

function,  iΩ is the natural circular frequency of the 
i-th mode. In Eq. (3), the expression for the added 
mass is as follows: 2 / 4;adm dχπ=  χ is the 
coefficient depending on the structure design.For 
values of frequencies considered in the paper the 
added mass may be assumed independent on 
frequency[ D.J.Crighton  1983]. 
 
2.2. Solution of the structure motion equation 
 
Although cables and wires very often are made of 
synthetic fibers, for example Capron and Kevlar, 
some cables are made of stainless steel. Since the 
density of the fluid is smaller then the density of the 
structure material it is natural to introduce there ratio 
as a small parameter ε; then the right hand side of Eq. 
(4) can be represented as: 

               ( , ) ( , )F y t f y tε=& &                                                                                                                                                                             
where ε is a small parameter. Since the lift coefficient 
frequency does not coincide with the natural 
frequency of the structure, the approximation of the 
solution of Eq. (4) will be constructed in the form: 

                                        
( ) s in ( ( ))y A tτ ω ψ τ= +                   (5)                                                  

 
where A is the displacement amplitude, ψ is the 
displacement phase, ω is the circular frequency of the 
structural vibration. In Eq.(5) the amplitude and the 
phase are time functions slowly changing. In Eq. (5) 
the slow time τ=εt is introduced. Then, the standard 
averaging procedure is used. One can get, up to the 

order of    
2( )O ε : 

0

0
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(6) 

 
 
Where : 

0( , ) ( )g y t R y F= +& & ; 
3 5

1 3 5( )R y b y b y b y= − + −& & & & ;   

0 0 sin( )sF f tω β= + . 
At 0A >  the phase ψ is changing so, that either 
ψ → ∞  or, if the contribution of 0F  has roots 

0 1, ,...ψ ψ ψ ∞ , then ( )ψ ψ τ∞→ → ∞ . It means 

that the equilibrium values of ψ ∞  are the roots of the 

contribution from  0F  . These roots can be shown to 
satisfy the following equation: 

1 ( )cos[
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where  sω ω ω∆ = −  

Let us consider the case when sω ω εα= + , it is so 
called the lock-in region, its lower branch if α>0. 
Then the system of Eqs. (6) with the 

accuracy
2( )O ε becomes: 

0

0

2 2 cos
( ) sin

A A f
A R A f

τ

τ

θ α θ
θ

 = +


− = +
                                  (8)                                       

where tθ β ψ αε β ψ ατ= − + = − + . 
Let us now consider the behavior of the system when 

ω is closed to sω  and detuning parameter α is small. 
For the steady state we have:    

                                        
2

2
0 2

0

0

( ) 1 4 0

cos 2

AR A f
f

A
f

α

θ α

± − =

= −
                          (9)                                         

Let us determine the types of the critical points which 
satisfy the steady state conditions (9). In the vicinity 

of 0 0 0( )
2

R A fπθ = = ±  one can get after 

standard manipulations the following eigenvalues of 
Jacobian (when α→0): 
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0
1 2 0

0

( 1) 1 ( )
2

k f R A
A

λ λ
ω ω

− ′= = −  

If 1 2, 0λ λ > then we have unstable node; if 

1 2, 0λ λ < , then the node is stable, and if  

1 20, 0λ λ< >  or 1 20, 0λ λ> <  one has 

saddle. If α is not small but 0f is small then the first 
equation of Eqs. (6) can be reduced to the equation: 

τθ α=  and from this follows θ ατ=  and 

0( ) sinA R A fτω ατ− = + , then one has small 
oscillations near the equilibrium point. The solution 
of   the equation for finding the dimensionless 
amplitude of the structure is shown on the fig1.  
 

 
Figure 1. The solution of   the equation for finding 
the dimensionless amplitude of the structure 
 
 
 
It is seen that depending on the value of the force 

amplitude 0f  it is possible to have one, two or three 
values of the resonant displacement amplitudes. The 
result of calculations is shown according the 
suggested in the present paper model is shown in 
Fig.2. As can be seen from Fig.2 the suggested model 
in the lower branch of the lock-in region has a 
satisfactory agreement with the experimental data 
from [Ramberg&Griffin 1976]. 
 

 
Figure 2. Comparison  with experiment 

 
 
                              
 
 
2.3. Effect of variation of an added mass with the 
reduced velocity 
 
The mean value of the added mass over one period of 
oscillations as a function of the reduced velocity was 
found in [Vikestad at.al. 2000]. Using that data it is 
possible to find the frequency of vibrations in the 
lock–in region for its lower branch more accurately. 
Variation of the mass as a function of the reduced 
velocity on the basis of data from [Vikestad at.al. 
2000] can be approximated by the following 
expression: 
                     0 1raV

addm m e−= −                         (10)                                                  

where 0m = 14.135       and   a=0.331. 
If we substitute Eq.(9) into Eq.(3) then one can get 
that not only the natural frequency of the structure 
but also the structural damping is influenced by the 
variation of the added mass and the coefficients of 
the right hand side of the Eq.(4) as well. If we take 
into account the variation of the mass according to 
Eq. (10) then all formulas obtained in 2.2 are still 
valid.  
 
4 An example 
 
The results obtained in the presented work are 
compared in this section with experimental results 
available in literature [Devnin 1975]. 
Coefficients 531 ,, bbb  in the Eq. (3) can be 
determined by using the measured accelerations and 
the structure displacement amplitudes following the 
technique given in [Devnin 1975].  Measurements 
given in [Devnin 1975] have shown that for 
calculations of elastic cylinder oscillations or 
oscillations of some types of cables the same ib  
coefficients can be used for particular parameters of 
the fluid flow and structures.  The cylinders (straight 
and bent) used in that experiments were from 1 to 5m 
length and have diameters from 0.1-0.4 m. Maximum 
bend cylinder deflection was in the range of 0.23-
0.66 m, Re=6000-50000 ; the Strouhal number  
corresponded  αsinStSt =  , (where α is the angle 
of attack), was practically constant (for bent 
cylinders) when attack angles were smaller then 50o , 
and is equal to  St=0.19 for criticalReRe < .Those 
experiments have been performed for flows with the 
values of velocities 0V =0.1-3m/s. For determination 
of the lift force parameters the following method was 
suggested. The lift force as was mentioned above 
consists of two non-correlated components. The first 
one can be estimated from the data obtained from the 
tests with fixed cylinder. The value of the second 
component, caused by the changing of the type of 
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vortex shedding, can be found using the method 
suggested in [Devnin 1975] on the basis of 
knowledge of the dispersion of the cylinder 
oscillation amplitudes and spectrum, for different 
Reynolds numbers and for different ranges of the 
cylinder length and diameters. For the given range of 
the flow and structure parameters the above 
mentioned 0, ,i nb f c coefficients can be taken as 
follows for an elastically mounted cylinder: 

                                    

1 3 5

0

0.17 1.4 0.7

0.6 1.2 0.19n

b b b
f c St

= = =

= = =
              (11)                                          

The coefficient 0f depends on the type of structure 
(elastic cylinder, cable, wire) and its value is varying 
in the range 0.05-0.6. In the presented model the 
value of the mass-damping parameter mξ =0.013 and 
μ=8.72: 

2
0 0.5/ , /4,

2( ( ))c d d
c add

m m m m d L
m m

ς
πρ ξ

σ
= = =

+
 

where σ is the system stiffness. 
Those values were taken close to those which were 
used in [ A.Khalak& C.H.K.Williamson 1997]. For 
the lower branch of the lock-in region, when rV =5.5-
8.5, the dependence of the added mass on the reduced 
velocity was taken into consideration. As can be seen 
from Fig.2 the suggested model in the lower branch 
of the lock-in region has a satisfactory agreement 
with the experimental data from [ R.H.J.Willden and 
J.M.R.Graham 2001]. The resonance value of 
amplitude is 20% higher then was found in the 
experiment. The computer simulation for the rV =2-

4.5 and rV =8.5-10 was conducted according to Eq. 
(4) with the help of the Maple 9.5 and show a  good 
agreement with the experimental data from 
[R.H.J.Willden and J.M.R.Graham  2001]. 
 
4 Conclusion and discussion 

 
The proposed in this paper semi-empirical model of 
the fluid force allows highlighting some peculiarities 
of the VIV of the bluff bodies. The maximum 
amplitude value of the structure vibrating in the flow 
for the parameters range indicated in the part 3 has 
been estimated and found to be 20% higher then the 
experimental one. The amplitude of vibrations in the 
resonance range depends on the amplitude of the 
forcing term. When the amplitude of the forcing term 
reaches a particular value and the phase difference 
between the structure displacement and the periodic 
component of the lift force is equal to / 2π  then the 
stable oscillations became impossible even if the 

condition 1
s

ω
ω

=  is fullfield. It is because the flow 

energy that the structure gets at some flow velocity 

cannot be accumulated on that one mode. As a result 
the system jumps between the different modes.  
There are still however many open problems for 
future research which should be solved. Some of 
them are as follows. The case when the added mass is 
a varying with time function should be investigated, 
for example. The equation of the structural motion in 
this case is as follows:                       
( ) ( , )add addm m y m y y cy F y tς+ + + + =&& & & & &     (12)                          
This equation is different from the equation which 
was used in [R.H.J.Willden and J.M.R.Graham 
2001]. In Eq. (12) the additional term my& & is 
introduced. If the added mass is time-varying then in 
addition to the change of the oscillation frequency it 
can lead to the amplitude growth and instability of 
the structure. For the case when the forcing and 
structural damping terms vanish the exact solution of 
Eq. (12) can be obtained if the dependence of the 
added mass on time is a smooth function. In that case 
the solution of Eq. (12) can be found in the closed 
form [H.J.Holl,A.K.Belyaev,H.Irschik 1999].For 
example, for an exponential variation of the mass the 
authors of shows that when time increases, the 
oscillation amplitude grows exponentially. Then a 
solution for the nonhomogeneous equation can be 
obtained with the help of the method of variation of 
constants. That solution will be also unbounded. 
Then the only possible reasons for limitation of the 
amplitude can be a nonlinearity of the fluid force or a 
large structural damping. Using the equation of the 
form: 

2( ) ( , )add addm m y m y y y F y tς+ + + + Ω =&& & & & &  and 

dividing both parts of it by addm m+ , one can get 
the equation which will have time-varying 
coefficients. For the case when addm  vary with time 
according to the harmonic law or as a piece-wise-
constant  function the solutions of the linear 
equations with variable in time coefficients were 
obtained in [A.H.P. van der 
Burgh,Hartono,A.K.Abramian 2006]. Also the 
solution of the non-linear equation with variable in 
time coefficients and polynomial non-linearity with 
respect to the first derivative of the structure 
displacement of the power of three was found as well. 
The results obtained in [A.H.P. van der 
Burgh,Hartono,A.K.Abramian 2006] show that 
solutions and regions of the stability depend on the 
parameters of the system. In stead of the 
exponentially decaying mass in the mentioned above 
cases the stable oscillations are possible for the 
particular parameters of the system under 
consideration. The measurements given in [Devnin 
1975 and K.Vikestad, J.K.Vandiver, C.M.Larsen 
2000] show that the lift force consists of not one but 
several harmonics. Usually, only the first harmonic is 
taken into consideration. The presence of the higher 
harmonics leads to the fact that the structural 
oscillation frequency at resonance is smaller then the 
natural frequency of the structure. When the 
amplitude of vibrations is considered the influence of 
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the higher harmonics on the amplitude is marginal 
but is significant on the vibration frequency. For 
simplicity assume that the structure is linear and has a 
small structural damping which can be neglected. The 
average values of the potential and kinetic energies of 
the structure over one period at resonance should be 
equal: 

                2 2

0 0

1 1T T

My dt cy dt
T T

=∫ ∫&                      (13)                                                  

Then, one can seek a solution of Eq.( 3) in the form: 

1 2 2

1 2 2

sin sin(2 ) ...
cos 2 cos(2 ) ...

y A t A t
y A t A t

ω ω ϕ
ω ω ω ω ϕ

= + + +
= + + +&

          (14)                               

Then, substituting Eq. (13) into Eq. (14) and taking 
into consideration that the harmonics are orthogonal, 
one can get: 

                     2 2 2 2

1 1
n nM n A c Aω

∞ ∞

=∑ ∑  

where 2
0 /c Mω = .  So, finally for the frequency ω  

of the structural vibration one has: 
                                           

2 2 2
2 2 1 3

0 2 2 2 2
1 3

[ .... ]
[ 9 ... ]

n

n

A A A
A A n A

ω ω
+ +

=
+ + +

     (15)                                  

From Eq. (15) it follows that the vibration frequency 
at resonance became decreases as a result of the 
existence of  odd harmonics in the lift force spectrum 
.When the amplitudes of vibration increase the 
frequency decreases, which coincide with  
experimental results obtained in [K.Vikestad, 
J.K.Vandiver, C.M.Larsen 2000]. So, the influence of 
the higher harmonics should be considered and there 
interaction as well. It can be done with a help of a 
more accurate technique provided by the averaging 
method and a computer simulation. The next 
approximations of the solution of the Eq. (4) where 
the terms of the order higher than ( )O ε are taking 
into account have to be found. The coupling of the 
different modes of the structural oscillations in the 
crossflow and inflow directions has to be considered 
as well. The coefficients 1 3 5 0, , ,b b b f were found 
from the experimental data under the assumption that 
the lift force is uniformly distributed  along the length 
of the tested cylinder. For such structural elements 
like cables and wires it is necessary to find the 
correction coefficients which will take into account 
the non-uniform distribution of the lift force along the 
length of the structure and its segments. The 
applicability of the suggested values of 1 3 5, , , nb b b c  
for different types of structures has to be verified by a 
comparison with various experimental data. And, 
finally, the solution of the Eq. (1) should be found. 
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