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Abstract— Spatio-temporal excitation patterns in various
neurological disorders constitute examples of excitable be-
haviour emerging from pathological pathways. During mi-
graine, seizure, and stroke, an initially localized pathological
state can start to spread indicating a transition from unex-
citable to excitable media. We investigate this transitionin
the generic FitzHugh-Nagumo (FHN) system. Our goal is to
define an efficient control minimizing the volume of invaded
tissue. We show how to change parameters of the system so
as to efficiently protect tissue surrounding a stimulus against
recruitment. Furthermore, we show that wave propagation
can be suppressed with a nonlocal cross coupling scheme.
The area in the parameter plane where this control goal is
achieved resembles a Mexican-hat-type network connectivity.
This suggest that failures in synaptic transmission resultin
increased susceptibility of cortical tissue to pathological activity.
Such a modulation of excitability becomes of crucial importance
when the cortical state is close to the bifurcation of the
onset of wave propagation. The clinically relevant conclusion
to be drawn from this is that therapy might target network
connectivity that modulates cortical tissue excitability.

Three paradigmatic clinical manifestations of spreading
pathological states motivate efforts to understand how the
spread of such states arises and how it can be controlled.
First, in migraine with aura seizure-like activity spreads
slowly through parts of the cortex [1], [2], [3]. This is
observed by symptomatic [4] and electrophysiological [5]
events. Second, epileptic seizures can have a localized onset
and then grow in intensity and start to spread [6], [7]. This
usually leads to subsequent generalized motor involvement
commonly referred to as partial seizures with secondary
generalization. In some cases, however, the epileptiform
activity may induce changes to subcortical structures produc-
ing clinical signs of general motor involvement that merely
mimic a spread [8]. And third, during stroke a cortical
region that surrounds the infarct core and that initially suffers
functional injury can gradually and progressively fail and
suffer irreversible structural injury in untreated patients [9],
[10], [11], [12], [13], [14]. In this condition the electrophys-
iological changes are persistent, but there exist intermediate
repetitive TWF and it was suggested that ’therapy might [...]
target the intermediate forms of spreading depolarizations so
as to protect the penumbra [tissue surrounding the infarct
core] against recruitment into the infarct core’ [15].

The phenotypical manifestation of such spreading patho-
logical states is the phenomenon of spreading depression
(SD) [16]. SD is the basis of migraine with aura. Essentially
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identical electrophysiological features are associated with in-
farct expansion, called peri-infarct depolarization (PID) [17],
[18], [19]. The cascade of events that produce SD is related
to seizures [20]. Despite certain differences, seizure events
that begin with epileptiform discharges can either terminate
in SD, facilitate the synchronization, or spread by a similar
mechanism over a large area with a velocity resembling that
of SD [21], [6], [22]. SD is seizure-like activity evolving as a
slowly spreading non-or-all type process. It is characterized
by the feedback of ion currents that change ion concen-
trations, which, in turn, influence the membrane potential
[20], [23]. Shortly after its onset all neuronal activity is
depressed, hence its name. The name is misleading, because
SD can still be observed even when neuronal activity is
depressed by blocking the fast transient sodium current INa

[24]. SD emerges from an excitable pathway in neuronal
tissue independently of the normal neuronal activity. It was
therefore suggested to categorize SD and similar phenomena
under the term spreading depolarizations [15].

There is ample evidence that SD belongs to the self-
organization processes due to the coupling of biochemical
reaction with diffusion [25], [26]. Mathematical models of
SD have been suggested [27], [28], [29], [20], [23], though
there is not yet consent on the mechanism. We will use
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Fig. 1. The nullclines (bold)̇u = 0 and v̇ = 0 in the phase space of
the homogeneous FHN system withγ = 0, β = 1.4. Their intersection
at (us, vs) is a stable fixed point. Three trajectories are drawn forǫ =
0.04: one canard trajectory (dotted), passing through the maximum of the
nullisocline u̇ = 0, and two trajectories starting atv = vs nearby but
on opposite sides of the canard trajectory. They diverge sharply, producing
threshold behavior: (dashed) = super-threshold and (dashed-dotted) = sub-
threshold stimulation. The parameterβ correlates with the threshold size,
while ∆ is in a certain range inversely related and therefore correlates with
the excitability of the system (see text).



the spatially extended FitzHugh-Nagumo (FHN) system as
a generic model of neuronal excitation patterns based on
reaction-diffusion. As a neuronal model, it describes generic
pattern formation properties not limited to nerve impulse
propagation along an axon, although it was originally de-
rived from the Hodgkin-Huxley model of action potentials
[30], [31], [32]. The FHN system describes also the spatial
features of SD wave in neuronal tissue [33]. Furthermore, the
transition from non-excitable to excitable media supporting
traveling waves was well investigated in the FHN model [34],
[35]. It was suggested that the spatio-temporal patterns in
SD occur at this transition [33]. The regime in which this
transition takes place is also well investigated in chemical
model systems in experiment and theory, for a review see
[36].

The route to spreading excitability in a generic model
is provided by two independent pathways: one lowering
the threshold of evoked activity, the other changing the
ratio of the biochemical reaction rates, and hence the time
scale ratio. The two pathways might offer new opportuni-
ties in developing optimal therapy. Consider the case that
a pathological condition is caused by a shift along one
path whereas therapeutic strategies are available for both
pathways. Suppose both strategies can be combined while
each has individual response rates and side effects. What
is an optimal time efficient combined therapy stopping the
spread while minimizing side effects? Since therapies can
be combined, there is a two dimensional manifold in which
therapy takes place. The strategy we suggest is to equip this
manifold with a metric that allows us to find an effective
combined therapy with minimal side effects. Effectivenessis
defined by finding a path to a sufficiently low excitability
where the tissue is not susceptible to spreading events,
whereas efficiency refers to side effects and time.

I. PARAMETER SPACE OF THEFHN SYSTEM

We assume that a standard activator-inhibitor scheme leads
to the observed propagation phenomena during SD. The
activator and inhibitor variables,u and v, are coupled by
their kinetic reaction ratesf(u, v) andg(u, v), respectively,
and can diffuse in the medium. The equations are
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Fig. 2. Parameter space of the FHN system (γ = 0, δ = 0). Besides
the parameterǫ, a threshold parameterβ and anexcitability parameter∆
is used in (a) and (b), respectively, to span the parameter space (see Fig.
1). Three regimes exist defined by the spatio-temporal patterns that occur:
waves, transient wave forms (TWF) and no spreading activity. The arrows
mark two paths which are perpendicular to the border∂S in (a) but not in
(b).
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Fig. 3. (a) Parameter space with tissue-at-risk(TAR)-isolines (dashed). The
extent a TWF spreads is defined from the stimulation border tothe location
where the maximum activator concentrationu lies above the nullisocline
u̇ = 0 (inset). The red curve in the inset is the projection of a TWF from
the infinite phase space of the space-dependent FHN system into the one of
the homogeneous system forβ = 1.4, ǫ = 0.04. The projection is taken at
the moment which we defined as the collapse of the TWF. (b)-(d)Space-time
plots of the transient wave forms (TWF) following a stimulation (increase
of u by 2 for 0 < x < 1, starting from the fixed point). Parameters: (b)
ǫ = 0.04, β = 1.4, (c) ǫ = 0.05, β = 1.4, (d) ǫ = 0.095, β = 1.185.
Du = 1 andδ = 0 for all parts. The color code denotes the activatoru as
defined in the inset of panel (a).

∂u

∂t
= f(u, v) + Du

∂2u

∂x2
(1)

∂v

∂t
= ǫg(u, v) + Dv

∂2v

∂x2
.

Diffusion is represented by diffusion coefficientsDu and
Dv. By re-scaling space, the ratioδ = Dv

Du

of the diffusion
coefficients can be introduced. The parameterǫ is the time
scale ratio of inhibitor and activator variables. The reaction
ratesf(u, v) and g(u, v) may possibly be derived from a
more complex model of SD, e.g., the one from [20], by
lumping together all activator variables, such as inward cur-
rents and extracellular potassium concentration[K+]o into
a single activator variable and their combined kinetics into
a reaction ratef(·, ·). Likewise, a single inhibitor variable
could be related to recovery processes, such as effective
regulation of[K+]o by the neuron’sNa-K ion pump and
the glia-endothelial system. This will be an important taskof
future investigations. We aim to describe universal features of
reaction-diffusion coupling that lead to the onset of spreading
pathological states and do not specify the variablesu andv
which underly these characteristics other than that they play
the roles of activator and inhibitor, respectively. Their kinetic
functionsf(u, v) andg(u, v) are given by the FHN system

f(u, v) = u −
1

3
u3 − v (2)

g(u, v) = u + β − γv

whereβ andγ determine the excitation threshold (Fig. 1).
We shall start by viewing the parameter plane of the FHN

model as a manifoldM and consider its geometric structure.
M has four dimensions (ǫ, β, γ, δ). In a certain regime the
parametersβ and γ determine the threshold for a non-or-
all excitation process. Likeǫ, their variation can cause a
bifurcation: the emergence of sustained travelling waves.
Instead of the four dimensions usually a two dimensional
subset is investigated to describe this bifurcation, for example
the section atγ = 0.5 [34], or at γ = 0 [35], both with
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Fig. 4. (a) Dose response curves for an effective dose and a toxic dose
with the typical sigmoidal shape caused by the logarithmic scaling. (b),(c)
Same as in (a), but with rotated and inverted axes for two drugs ζǫ acting on
ǫ andζβ acting onβ. (d) Schematic parameter space with two TAR-isolines
(TAR high and TAR low). A route to hyperexcitability can be caused by a
shift in ǫ (from N to �). The optimum path from the hyperexcitable state
(�) towards the isoline of the physiological state (TAR low) using the two
dose and toxic response curves in (b) and (c) leads to (•).

δ = 0. Consider the subset atγ = 0. A particular FHN
system is specified by a pointq of this subset. It can be
parameterized by the coordinate functionsǫ(q), i. e., the time
scale separation ofu and v, and the threshold parameters
β(q). As an alternative coordinate function forβ(q)

∆(p) = (β −
1

3
β3) (3)

can be chosen [35]. Whileβ is a measure of the threshold,∆
is related to a measure of excitability, because it is equal to
the inhibitor concentration in the steady state (Fig. 1). This
is rather a convention than a definition of excitability. To be
more general, we shall only assume that excitabilityE is
a C∞-function E : U → R in a subsetU of M . Further
properties of this function will be defined later. Firstly we
want to note that there obviously exists a whole set of
coordinate systemsA for M with coordinate transformations
like Eq. (3) beingC∞ diffeomorphisms. Naturally,M can
be identified as aC∞ differential manifold. For a given
subsetU of dimensionn we can chose the coordinate system
ξ = [ξ1, . . . , ξn] = [ξi] ∈ A, with i ∈ {1, 2, . . . , n} that
seems to suit best the purpose of study. Thus, in the section
with n=2 andξ1 =ǫ the parameterξ2 can be chosen either
as β or as∆. We will mainly consider the hypersection at
δ = 0, andγ = 0 unless explicitly stated otherwise, and use
various coordinate systems in this submanifold.

II. T RANSIENT WAVE FORMS (TWF)

Excitability is an emergent property of active media. It
arises when a critical parameter value is crossed above
which the medium is susceptible for sustained propagating
excitation patterns [37], [34], [35]. In a 1D medium this

border inM is the propagation boundary∂P . Below∂P any
confined perturbation of arbitrary profile decays eventually.
Above ∂P some wave profiles are stable and travel with
constant velocity. In a co-moving frame, these travelling
waves are equivalent to the existence of a homoclinic orbit.
The transition marks a bifurcation of codimension one.
Therefore∂P is a hypersurface inM separating the regime
supporting travelling waves from the non-excitable one. Ina
two-dimensional parameter space, spanned byǫ, andβ or ∆,
∂P is a curve defined by fold points (Fig. 2). We consider
the regionclose to ∂P , where TWF exist though sustained
waves may not.

In the absence of a metric onM closeness to∂P can be
defined with reference to other borders by whichM is further
subdivided. The adjacent bifurcation curve above∂P is ∂R,
which is defined only in systems with more than one spatial
dimension. In these systems∂R is the border above which
open wave fronts will not disappear because the open ends
curl in to form a spiral shape. Open waves rotate and re-enter
multiple times the invaded tissue. Between∂R and∂P TWF
exist, depending on the initial size and shape. In this study,
we will consider only one spatial dimension. Therefore we
only investigate the region below∂P , because above∂P
such TWF do only exist for spatial dimensions higher than
one.

We suggest to take the distance a TWF spreads to define
isolines in the regime below∂P . This distance defines the
volume of tissue at risk (TAR, see Fig. 3 (b)) referring
to the risk of transient neurological symptoms or even of
permanent damage (PID case) when this tissue is invaded
following a local stimulation. We define a new boundary∂S
as TAR approaching 0. At∂S any stimulation collapses into
the steady state without affecting surrounding tissue. On the
contrary, at∂P the TAR is infinite, as stable waves exist
which spread through the whole tissue. The region between
∂S and∂P is the region where in a 1D system TWF exist.
This region defines a subsetU of M . The general point of
a therapeutic control strategy is to leaveU by crossing∂S.

III. E FFICIENT CONTROL OF TRANSIENT WAVE FORMS

So far excitabilityE has not been defined. We assume
E to be aC∞-function in U . In fact, it is reasonable to
assume thatE is constant on the two borders, because these
are bifurcation lines at which TAR is constant. Furthermore,
since a change in TAR is suggestive of a change in excitabil-
ity, we propose both to be linearly related. Our goal is to
control a pathΛ in U along which excitability, and with it
the volume of TAR, is efficiently diminished. Let the pathΛ
start inU at q where the neuronal tissue temporarily supports
the spread of excitation. Let the path end on∂S. Firstly,
we assume sufficient knowledge of control characteristics,
e. g., by pharmacokinetic and pharmacodynamic means, as
described in the next section. We will show in the next
section that this provides a metric onU . In this section
we will just assumeU to be a differential manifold with a
metric. Furthermore, we assume (i) that our control method
allows us to choose any pathΛ : I → U parameterized by



some intervalI ⊂ R, (ii), as already stated, (ii) thatE is a
C∞-function in a subsetU , which includesΛ, and (iii) that
E(q) > E(∂S) holds.

Which path should we take, if we want to reduce ex-
citability by going fromq to ∂S by deliberate control? The
efficiency of successful control dragging the system into the
target statep on ∂S should be given by some optimization
criterion. When a metric is given two paths are privileged:
the shortest pathΛs betweenq and∂S, and also the one that
minimizesE by gradient descent. The latter pathΛg implies
a metric because covectors like∂E/∂ξj and tangent vectors
to a pathΛ are unrelated objects of different kinds. Only
a metric tensorgij defines the gradient as a contravariant
vector (using summation convention)

(gradE)i = gij ∂E

∂ξj
. (4)

Therefore, only when a metric is given onU , we can apply
some optimization criterion for the therapeutic path.

IV. M ETRIC TENSOR ONU

As efficient control, in the last section we proposed a
method based on a metric structure inU . Therefore, a metric
structure is needed to optimize control. Hence it is natural
in this context to endowU with a metric that is derived
by some sort of cost function of the control method. We
introduce a standard pharmacokinetic and pharmacodynamic
scheme to illustrate this concept. Letζi be the concentrations
of drugs which regulate diverse functions in populations of
neurons. For the sake of simplicity, we neglect the details
of pharmacokinetics as the discipline that describes dosage
regimes and the time-course ofζi in the body by absorp-
tion, distribution, metabolism, and excretation. We assume
the drugs can be constantly administered and their rate of
administrations equals their rate of metabolism and excretion.
Thusζi is immediately in its steady state value. Furthermore,
we assume thatζi follows linear pharmacokinetics. In this
situation the steady state ofζi changes proportionally ac-
cording to dose.

The relation between drug dose and response is usually
modeled as a hyperbolic function assuming a simple drug
receptor interaction. Suppose the response toζi is a displace-
ment inU given without loss of generality in the coordinate
systemξ = [ξ1, . . . , ξn]

ξi = ri

(

ξi
maxζi

ECi
50

+ ζi

)

. (5)

In this equation,ri denotes transducer functions that
represent the response of the FHN system to the drugζi.
For the sake of simplicity we use as transducer functions
ri the identity.ECi

50 are theeffective doses 50, i.e., doses
at which 50% of the maximal responsesξi

max are achieved.
ξi
max is the asymptotic value ofξi for large concentrations.

In analogy with Eq. (3), where we have introduced the
new coordinate∆, we have thus introduced the coordinate
systemζ ∈ A as new control parameters of the FHN system.
Although the coordinate systemζ is a privileged reference

system forU by selectingζi, we can not simply assume it
to be Cartesian. Note, that commonly the logarithm of the
concentrationζi is plotted on the abscissa (Fig. 4 (a)). Thus,
the choice of the unit of concentration is arbitrary.

Let us write the components of the metric tensor ofU
in the coordinate systemζ as gij . We can introduce a new
coordinate systemξ ∈ A of the response variables. The
components of the metric tensor in this coordinate system
ξ are

g̃αβ =
∂ζi

∂ξα
gij

∂ζj

∂ξβ
. (6)

Likewise, we can calculate the componentsgij from g̃ij .
Hence the question is whether a structure of the pharma-
codynamic scheme can be treated as a metric structure in
differential geometry defining̃gij . Suppose thatζi or one of
their metabolites have toxic side effects. Their dose response
curve follows the same relation as Eq. (5), although shifted
to the right on the dose axis by a highertoxic dose 50(TC50)

T i = ti
(

T i
maxζi

TCi
50 + ζi

)

. (7)

ti denotes transducer functions that represent the response
of the toxic system. Again for the sake of simplicity we use
as transducer functionsti the identity function. In analogy
to Eq. (6) we obtain

g̃αβ =
∂ζi

∂ξα

∂T k

∂ζi
δkl

∂T l

∂ζj

∂ζj

∂ξβ
, (8)

assuming[T 1, . . . , T n] builds a Cartesian coordinate sys-
tem of the costs with the Euclidean metricδkl.

We end this section with one example corresponding to a
subtype of migraine with aura for which pathogenic genetic
mutations are known. A recent study by [38] showed that a
novel migraine mutation introduced in the gene coding the
sodium channel leads to a slowed-down inactivation and a
two-fold faster recovery from inactivation. Thus the physio-
logical state of the cortex is shifted into hyperexcitability in
our simplified FHN model by slowed inhibition, i. e., lowerǫ
values. Now suppose that we have a drug with concentration
ζ1 acting exclusively onǫ (e. g., ξ1 ≡ ǫ) and anotherζ2

acting exclusively onβ (e. g., ξ2 ≡ β). For the sake of
readability we replace the set{1, 2} of indicesi by {ǫ, β} and
useζi for both the drug concentration and the drug name. Let
the effective doses 50ECi

50 be the same for both (without
loss of generality we chooseECi

50 = 0.1), and let the
toxic doses 50TCi

50 differ. Usually TCi
50 is several times

higher then the effective dose. We chooseTCǫ
50 = 5 and

TCβ
50

= 10. The drugζβ has therefore a relatively higher
therapeutic indexTIi = TCi

50/ECi
50 thanζǫ (Fig. 4).

We now consider how the two drugs must be administered
in a combined therapy. First, we assume that both drugs have
a sufficient efficacy, that is, they are each potent enough to
drag the FHN system back to it physiological excitability
defined by the TAR-isoline (Fig. 4 d). The maximal response
ξi
max rates for both are chosen such that already 80% of
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Fig. 5. Parameter space of the FHN system at the sectionγ = 0.5.
∂P is the propagation boundary. Below∂P any confined perturbation of
arbitrary profile decays eventually. Above∂P some wave profiles are stable
and propagate with constant speed. They correspond to homoclinic orbits
in a co-moving frame. The simulations have been done with a FHN system
at β = 0.8 and ǫ = 0.1 (solid black circle). A successful suppression of
reaction-diffusion waves by nonlocal coupling indicates ashift of ∂P of
the combined system beyond the point atβ = 0.8 and ǫ = 0.1.

ξi
max is effective. Without loss of generality we fixT i

max at
ξi
max. If only ζǫ is available, the physiological TAR level is

crossed at 7.4% of the maximal toxic level ofT ǫ. A pure ad-
ministration of neuromodulatorζβ with doubled and halved
therapeutic indexTIǫ cost 3.85% of the maximal toxic level
T β. An optimal combined therapy with therapeutic index
TIβ reaches the physiological TAR level at 1.84% of the
maximal combined toxic levelTtot = T ǫ + T β (see the two
black lines terminating at the effect axes in Fig. 4).

V. SUPPRESSION OF WAVES BY NONLOCAL INTERACTION

Psychophysical studies on visual processing in migraine
patients suggest that changes in their networks of cortical
neurons lead to an interictal state of changed excitability, i. e.,
an anomalous cortical state in the interval between migraine
attacks [39], [40]. This motivates efforts to understand how
the spread of reaction diffusion waves is controlled by
nonlocal network connectivity.

To investigate the influence of various nonlocal connec-
tivity schemes on wave propagation in the regime of sub-
excitability, we start by setting a super-threshold stimulation
in the one-dimensional system, choosing a particular FHN
system with parameter valuesβ = 0.8, ǫ = 0.1, γ = 0.5,
Du = 1, andDv = 0. Once a stable one-dimensional wave
profile is obtained, a nonlocal lateral network is switched on

∂u

∂t
= u −

1

3
u3 − v +

∂2u

∂x2

+nonlocal coupling (9)
∂v

∂t
= ǫ(u + β − γv)

+nonlocal coupling. (10)

The nonlocal coupling terms have the form

K [s(x + δ) − 2s(x) + s(x − δ)] . (11)

K

δ
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Fig. 6. Parameter plane (K, δ) of the nonlocal control term. Black areas
indicate successful suppression of wave propagation. (a) Non-cross coupling
(NCC) in the activator equation (9). (b) NCC in the inhibitor equation (10).
(c) Cross coupling (CC) in the activator equation (9). (d) CC in the inhibitor
equation (10).

The signals can either be the activatoru or inhibitor v. A
connection in the cortex can extend over several millimeters
and it either mediates competitive or cooperative interactions.
The parameterδ describes the connection length and the
coupling strengthK of the interaction.

Different networks for various parameter valuesK andδ
are classified by their effect on the wave. We distinguish two
cases. Either the wave is suppressed. This indicates that the
excitability boundary∂P of the combined system is shifted
to higher excitability values (upwards in Fig. 5) into a regime
where without the nonlocal coupling pulse solutions would
exit. Or the wave continues to spread, though its profile
and speed might change. From a clinical point of view, the
wave suppression is a desirable control goal for the network
achieved within the solid black regions in the(K, δ)-planes
in Fig. 6.

We find that wave propagation can be suppressed with a
NCC (non-cross-coupled) setup only with positive coupling
strengthK. When the NCC term appears in the activator
balance equation, the desired control goal is achieved largely
independent of the connection lengthδ (Fig. 6 a), as long as
δ is in the range of the wave width, including its refractory
tail. When the nonlocal coupling term appears in the inhibitor
balance equation, a similar picture arises, though waves are
suppressed for connection lengths ranging into the refractory
tail of the wave (δ > 40) only for a narrow regime ofK.
Suppression completely fails forδ > 70 (Fig. 6 b).

Cross coupling of inhibitor and activator achieves the
desired control goal for both positive and negative coupling
strengthsK, depending on the connection lengthδ (Fig.
6 c-d). The area in the parameter plane(δ, K) where this
control goal is achieved resembles a Mexican-hat-type net-
work connectivity. This is readily seen in Fig. 7. When the
nonlocal term appears in the inhibitor balance equation (10)
the regimes of successful control in theK direction is much
wider (Fig. 6 d) than the regime for cross coupling in the
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negative to positive values. Shown is the successful control area (black) for
the CC term appearing in the inhibitor equation (10). When the CC term is
in the activator equation (9) the profile of the Mexican-hat connectivity is
inverted.

activator balance equation (9, Fig. 6 c).

VI. D ISCUSSION

The phenotypical scheme of spreading depression de-
scribes transient waves of massive depolarization of neurons
and astrocytes. Suchspreading depolarization[15] is asso-
ciated with migraine, epilepsy and stroke. Their etiologies
are mainly discussed in the context of hyperexcitability and
disorders known as channelopathies, that is, diseases caused
by a mutation in gene coding for ion channels. The challenge
is to bridge the gap between the molecular level of the cause
and macroscopictissuelevel of the effects.

We suggest that there are at least two independed routes
towards a hyperexcitable state that supports transient wave
forms in cortical tissue: one changing the ratio of kinetic
ratesǫ and one lowering the thresholdβ. While the latter
route changes the nullclines, the former changes only the
trajectories in the phase space. Consequently, there are also
two routes out of the hyperexcitable regime. This is of
particular interest when a critical therapeutic time window
exits in which the volume of affected tissue is largely
increased, as for example in peri-infarct depolarization.Then
the therapeutic aim would be first to prevent tissue loss
within the given window and re-establish the physiological
value later. In Fig. 4 (d) this would correspond to a path
from the hyperexcitable state (�) directly to a state of low
tissue at risk (•) and from there back to the physiological
state (N).

We have described efficient control of excitability by a
simple pharmacodynamic model. In general, the study of
beneficial effects of independent pathways is complicated
by numerous interactions between pharmacokinetics, phar-
macodynamics, and homeostatic factors and by individual
variability. For example, the introduction of antagonistic
behavior betweenζǫ andζβ will complicate the geometrical
structure ofU . In general the coordinate system of the costs
[T 1, . . . , T n] will not build a Cartesian coordinate system.
However, if we have a mapping from general costs and

effects defined by Eqs. (5) and (7) we still can infer a metric
structure of the parameter space of FHN. This may even lead
to a general definition of excitability.

Furthermore, we showed that certain control schemes of an
inhibitor-activator type system shift the emergence of wave
propagation towards higher values of excitability. The control
we investigated is of the form of a nonlocal coupling given in
Eq. (11). This nonlocal transaction was added to the reaction-
diffusion mechansim either in the inhibitor or the activator
balance equation. The sum of all individual cross coupling
terms that achieve a clinically desirable control goal takes the
shape of an upright or inverted Mexican hat, respectively.
This supports our assumption that the nonlocal coupling
results from intrinsic lateral cortical connections. Dichotomic
lateral interaction is an architecture widely used in models
of topographic feature maps.

To summarize, in modeling migraine a major objective is
to understanding cortical susceptibility to focal neurological
symptoms in terms of neural circuitry [42], [43], [?]. This
could open up to us new strategies for therapy using meth-
ods of controlling complex dynamics. Control of complex
dynamics has evolved during the last decade as one of the
central issues in applied nonlinear science [44]. Progress
toward clinical implementation of nonlinear methods has
been done so far in neurology in particular in Parkinson’s
disease, a neurological diseases also characterized by patho-
logical brain synchrony. There, techniques based on control
of complex dynamics [45] are now tested in clinical studies
and fundamentally novel therapy methods are being evolved
[46]. It is hoped that this success can be expanded.
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