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Abstract 
 
Investigation method of free nonlinear vibration of lami-

nated plates and shallow shells with an arbitrary plan form and 
different boundary conditions is proposed. The offered method 
is based on combined application of R-functions theory and 
variational methods. The passing to nonlinear system of the or-
dinary differential equations (NSODE) is connected with solv-
ing the sequence of the boundary problems in the domain of an 
arbitrary shape: linear vibration problem; sequence of problems 
of elasticity theory simulated by partial differential equations 
with special right part and corresponding boundary conditions. 
The variation method by Ritz together with R-functions theory 
is applied to solve foregoing boundary value problems. The fi-
nal passing to NSODE is carried out by Galerkin procedure. 
The coefficients of the obtained NSODE are presented in ex-
plicit form and expressed through the double integrals of 
known functions for the cases of single- mode and multi-mode 
approximation. The following investigation of the obtained 
nonlinear ordinary differential equation or system is fulfilled 
by Rung-Kutt method. The proposed method is illustrated on 
specific examples and compared with another approaches. 

 
1 Introduction 
Nonlinear vibrations problems of the laminated shallow 

shells are very essential for practice because shells are impor-
tant elements in many fields of lightweight construction.   In 
spite of the practical importance of these problems as the most 
recent survey papers on nonlinear vibrations of the shallow 
shell with complex plan form fully attest that there are not 
available studies in the specialized literature addressing this 
topic. Due to mathematical complexity of the problem majority 
scientists consider only simply supported shallow shells with 
rectangular form of the plane. 

The present study is devoted to solving problem for plates 
and shallow shells with complex form. Due to application of 
the R-functions theory the generalization of the classical idea 
allowing passing of the continual model to system with finite 
number of the freedom degrees simulated by nonlinear system 
of ordinary differential equations (NSODE) be found.  

 
2 Mathematical statement 
To demonstrate proposed method let us consider the geo-

metrically nonlinear vibration problem of laminated shallow 

shells. To simplify discussion let us assume that shell consists 
from odd numbers layers. They are symmetrical relatively to 
the middle surface. The mathematical statement of this prob-
lem in framework of classical theory is based on hypothesis of 
strain less normal which is accepted for all package in whole. 
The governing system is nonlinear one of the differential equa-
tions with partial derivatives written below [1,2] 
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The linear differential operators ,ijL  3,2,1, =ji  in the 

equations (2.1)-(2.3) are determined as follows: 
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Nonlinear operators ( ) ( ) ( )wvuNlwNlwNl ,,,, 321  are de-

fined as follows  
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Where ijij DС ,  are rigid characteristics [2], which are de-

fined with help elasticity constants i
jkB for every −i th layers 

as 
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If we deals with laminated cross-ply, angle-ply shell then 

elasticity constants for −i layer are computed by the follow-
ing formulas [2] 
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The differential equations (1.1) – (1.3) are supplemented 
by corresponding boundary conditions. Some of them we pre-
sent below: 

а) clamped edge 0,0,0,0 =
∂
∂

===
n
wwvu ,

b) simply supported edge (immovable) 
0,0,0,0 ==== vuMw n , 

c) clamped movable edge 

0,0,0,0 =
∂
∂

===
n
wwNv nn  

here n is normal to domain boundary Ω , nM  and 

nN  is defined by known formulas [1, 2]. 

The initial conditions are taken as follows:  

0,max =
∂
∂

=
t
www  

The given differential equations are nonlinear ones and 
enough complicated. The solving system (2.1)-(2.3) may be 
carried out by numerical method. Below one of such approach 
is proposed. 

 

3 Method of solving 

 

3.1 Solving the linear vibration problem  
 
The first step of the proposed method is solving corre-

sponding linear problem of free vibration of the shallow shells. 
It should be noted that it is the difficult problem in general 
case. This problem may be solved only with numerical meth-
ods. Distinctive feature of the proposed method is application 
of the variational-structure approach, based on theory R-
functions and variational methods. Namely such approach al-
lows finding natural frequencies and functions in analytical 
form for any domain and kind of the boundary conditions, what 
is very essentially for feature solving nonlinear problem.  

The variational statement of the linear problem is reduced 
to finding minimum of the functional  

maxmax TUJ −= ,              (3.1) 
where maxU  is maxima potentional energy of the shells and 

maxT  is maxima kinetic energy [1, 2]. 
To find minimum of the functional method by Ritz is ap-

plied. The consequence of basic functions satisfying given 
boundary conditions is generated by R-functions method [3, 4]. 
The main advantage of R-functions method is possibility to 
construct the basic functions in analytical form. The natural 
modes corresponding to linear vibration of the shells have been 
chosen as basic functions for representation of unknown func-
tions. 

  
3.2 Algorithm for solving geometrically nonlinear vi-

bration problem  
 
Essence of the proposed method are reduced to the fol-

lowing: the deflection function is expanded in Fourier series  
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where ( )yxwi ,  are the components of the eigenfunctions vec-
tor. Substituting this expressions into equations (2.1) – (2.2) 
and ignoring by the inertia terms one can obtain the following 
system 
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 Due to kind of on the right part of the obtained system 

(3.3) - (3.4) we can determine the form of solution for tangent 
displacements ),,( tyxu  and ( )tyxv ,, . Obviously these func-
tions may be presented as   
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Here ( )ii vu ,  are components of the vector eigenfunctions 

corresponding to і-th linear frequency, previously defined and  
( )ijij vu ,  is solution of the following system 

 
( )( )jiijij wwNlvLuL ,2
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22221 −=+                                    (3.12) 

      
The last system coincides with similar system for 2-

dimensional elasticity problems for which the right parts play 
the role of mass forces imaginary. The boundary conditions 

depend on ways of shell fixing. To find these functions the 
RFM method is applied [4, 6].  

Substituting the expressions (3.2), (3.9), (3.10) for 
( ) ( ) ( )tyxwtyxvtyxu ,,,,,,,,  into movement equation (2.3) one 

obtains the nonlinear ordinary differential equation in unknown 
functions ( )tyi . Obtained equations may be reduced to nonlin-
ear system of the ordinary differential equations in unknown 
functions ( )tyi  by Galerkin method. With this purpose the 
given equation is projected on eigenfunctions ( )yxwi , step by 
step. So we obtain the following system   
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In case plates the obtained system is essentially simplified 
because of the curvatures vanish and coefficients ( )m

ijβ =0.  
Let us note that the proposed method may be applied to 

laminated shells with an arbitrary numbers layers and in both 
case when we apply classical theory or theory by Timoshenko.  

To investigate the obtained system  of ordinary differential 
equations numerical methods may be used. In particular case 
when we use single mode it is possible to get the explicit de-

pendence 
L

Nv
ω
ω

= of the ratio of the nonlinear frequency to 

linear one on amplitude of vibration А [ 1 ] 

2
4
3

3
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L

N βα
πω

ω
+−=          (3.16) 

4 Solving the sequence of auxiliary theory elasticity 
problems 

 
As we noted the finding functions ( )ijij vu ,  is connected 

with solving the following system (3.11) - (3.12).   
Obviously the system is supplemented by corresponding 

boundary conditions. It is possible to prove, that this problem is 
equivalent to the following variational problem  
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where 
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If 0=ω is normalized equation of the domain boundary 

then 
x

l
∂
∂

−=
ω , and 

y
m

∂
∂

−=
ω .. 

The discretization of functional (3.1) and (4.1) are ful-
filled by RFM and Ritz method.   

According to method RFM to solve a boundary problem it 
is required to construct the solution structure, which is defined 
by  the formula ),,( iiBU ωωΦ=

r
. This formula contains in-

definite components iΦ , and functions  ω, ωi  with the help of 
which equations of a boundary domain or separate its part are 
described. 

For example solution structure, that satisfies exactly the 
clamped boundary conditions may be presented as follows  

321
2 ,, Φ=Φ=Φ= ωωω vuw   

Here 0=ω  is equation of the domain boundary, iΦ  are 
indefinite components.  R-functions theory allows to con-
struct equations in analytical form for any boundary with help 
only elementary functions. 

To find the indefinite functions 321 ,, ΦΦΦ   we will repre-
sent their as an expansion on series of some full system of 
functions (power polynomials, splines, Chebyshev’s polynomi-
als, etc).  

∑ Ψ=Φ
k

k
i

ki xa )()(     

The expansion coefficients )(i
ka  may be determined from 

the conditions of minimum of the corresponding functional. 
The proposed method is numerically realized in framework 

of software “POLE-RL” and widely tested on many nonlinear 
vibration problems for plates and shallow shells at the large 
amplitudes. 

 

5 Numerical results 

 

Let us investigate the geometrically nonlinear free vibra-
tion of the cylinder panel shown in Fig 1. The shell consists of 

 z 

y 

 x 

Fig.1 Shape of shell  

2a2 

b2 



four layer, ange-ply (00/-300/00/-300 ). 
Geometric sizes are  

5.0/2,0.0/2,001.02/ 21 === RaRaah . 
Suppose that the shell is carried out of the material with 

following phisycal rigid characteristics: 

23.0,1980.0,4086.0,0.1 122313122211 ====== νGGGEE . 

 6/52
2

2
1 == kk . 

The obtained backbone curves for different values of the 
parameters 11, ba  are presented in Fig.2: 

3.011 == ba  (curve 1L ), 4.011 == ba  (curve 2L ), 
45.011 == ba  (curve 3L ), 5.011 == ba  (curve 4L ). It is easy 

to see that curves tend to backbone curve 4L corresponding to 
cylindrical panel with trapezoidal at decreasing depth of cutout. 
This fact and also comparison of the obtained results with 
available [5] confirm the verification of the proposed method. 
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Fig2. Backbone curves for different values of cutout 
depth. 


