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Abstract
We report the results of study of two models of power

grids with hub cluster topology based on the second-
order Kuramoto system. The first model considered is
the small grid consisting of a consumer and two genera-
tors. The second model is the Nizhny Novgorod power
grid. The areas in the parameter spaces of the grids
that corresponds to different modes, including working
synchronous one, of their operation are obtained. The
dynamic stability of synchronous mode in the Nizhny
Novgorod power grid model to transient disturbances
of the power at its elements is tested. We show that
the stability of peripheral elements of the grid to dis-
turbances depends significantly on the lengths of their
connections to the rest of the grid.
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1 Introduction
The power grid is a part of the energy system in

which electrical energy is produced, converted, trans-
mitted and consumed. Successful operation of the grid
largely depends on its ability to provide reliable and
uninterrupted power supply to consumers. One of the
main requirements for ensuring reliable operation of
the grid is the preservation of synchronization of elec-
trical power generators during consumed-power dis-

turbance, power-plant failures, spurious actuations of
the automatic-protection systems in the electric-power
transmission systems and their breaks, as well as some
other events. The loss of synchronization among the
generators of the grid can provoke cascading failures
and lead to disintegration of the grid into individ-
ual clusters (power islands) and eventually to black-
outs. The clusters are formed around large-scale power
plants such as nuclear or hydroelectric power plants,
etc., which represent the so-called hubs i.e. the core
elements of the grids whose number of couplings sig-
nificantly exceeds the average number of couplings of
other elements. Thus, it is not only necessary to study
the stability of synchronous modes of the grids itself,
but also of their individual hub clusters. The basic el-
ement of the grid is a synchronous machine that can
work as a generator or a consumer. The dynamics of
a synchronous machine is described by the Park-Gorev
equations [Gorev, 1959; Park, 1929]. But these equa-
tions are complex enough to apply them to large-scale
power grids and a variaty of different approaches are
used. Among them topology oriented approach which
applies the findings of graph theory and different mea-
sures introduced on the graphs of the grids to their stat-
ical analyses [Pagani and Aiello, 2013; Dwivedi and
Yu, 2013; Song et al., 2017], probabilistic approach
based on the construction of probabilistic models for
studying of statistical patterns of development of cas-
cade failures [Solé et al., 2008; Rosas-Casals, 2010]
and dynamical approach based on findings and meth-
ods of theory of dynamical systems [Hill and Guan-
rong Chen, 2006; Witthaut and Timme, 2012; Lozano
et al., 2012; Motter et al., 2013; Menck et al., 2014;
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Klinshov et al., 2015; Filatrella et al., 2008; Drfler
and Bullo, 2011; Drfler and Bullo, 2012; Drfler et al.,
2012; Grzybowski et al., 2018; Arinushkin and An-
ishchenko, 2018]. Widely recognized dynamical ap-
proach assumes that the power grid is a set of intercon-
nected synchronous machines that simulate the opera-
tion of generators and consumers of electrical energy.
The state of each machine is determined from the equa-
tion of motion of its rotating part - the rotor. The quan-
tity characterizing this state is the phase of the rotor
in a coordinate system rotating with the reference fre-
quency of the network. The dynamics of the elements
of the grid is described by the second-order Kuramoto
model:

θ̈i = Pi − αθ̇i +
N∑
j=1

ki,j sin(θj − θi) (1)

In equations (1), θi is the rotor phase of ith machine,
N is the number of machines in the grid. Parameter Pi

characterizes either input or output mechanical power
of the electrical machine; it is negative for consumers
and positive for generators. The term −αθ̇i character-
izes the power loss and α is the damping coefficient.
The term ki,j sin(θj−θi) characterizes electrical power
transmitted between the ith and jth grid elements; ki,j
is a maximal power of transmission line between these
elements, and besides ki,j = kj,i. The constancy of
this term in time determines the synchronous (working)
mode of operation of the power grid.
In the paper we numerically investigate dynamics

and transient stability of two models of power grids
with hub cluster topologies. The first model is sim-
ple enough and consists of a consumer and two gen-
erators. In [Dmitrichev et al., 2017] we studied the
model analytically and established that for certain val-
ues of parameters it has four equilibrium states one of
which is stable and corresponds to synchronous mode
of the grid and the others are saddle ones. Here we
prove that there is a region of global asymptotic sta-
bility of the synchronous mode. The second model is
the Nizhny Novgorod power grid. The topology of this
model is more complex and consists of several hubs.
We study the dynamic stability of synchronous mode
of the model to transient disturbances of the power.

2 Results
First we consider a small hub cluster grid with topol-

ogy shown in Figure 1 consisting of a consumer and
two generators. Assuming k1,2 = k1,3 = K the dy-
namics of the grid would be described by the following
system:

{
φ̈1 = −γ1 − λφ̇1 − 2 sin(φ1)− sin(φ2)
φ̈2 = −γ2 − λφ̇2 − sin(φ1)− 2 sin(φ2)

(2)

1

�
1, y1

2 G 3 G

C

�
2, y2

Figure 1. Topology of the hub cluster power grid model with a con-
sumer and two generators.

Figure 2. Partition of (γ1, γ2)-parameter plane on regions with
different modes of the small hub cluster grid. Parameter values: λ =
0.7.

In equation (2), φi = θi+1 − θ1 are the phase differ-
ences between the generators and the consumer; pa-
rameters γi = P1−Pi+1

K are proportional to the differ-
ence between the mechanical powers of the consumer
and the generators; parameter λ = α√

K
.

By using numerical and analytical (Lyapunov func-
tions, comparison systems) methods, a partition of pa-
rameters plane into the areas corresponding to differ-
ent modes of operation (a synchronous mode, a quasi-
synchronous mode, an asynchronous mode and com-
binations of these modes) of the small hub grid is ob-
tained (see Figure 2).
In area a1 there is only synchronous mode. At the syn-

chronous mode, the variables φ1 and φ2 are constant in
time. In areas a2 and a3 there are synchronous mode
and two types of quasi-synchronous modes. At quasi-
synchronous mode one of the variables φi oscillates in
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time around some average value and another variable
decrease or increase in time (see Figure 3a). In areas
a4 and a5 there are synchronous mode, two types of
quasi-synchronous modes and asynchronous mode. At
asynchronous mode both variables φ1 and φ2 decrease
or increase in time (see Figure 3b). In area a6 there are
synchronous mode and asynchronous mode. In area a7
there is no synchronous mode.

Next we consider hub cluster grid that reproduces the
basic properties of the Nizhny Novgorod power grid,
based on a data from [Ministry of Energy of the Rus-
sian Federation, 2014]. The corresponding topologies
of real and model power grids are shown in Figure 4.

Here we assume that ki,j = 1�li,j , where li,j is the
length of the transmission line, between the ith and
jth elements. Also Pi = Pg for generator elements
and Pi = − PgNg

N−Ng
for consumers, where Pg is the

power of a generator in the grid and Ng is the number
of generators. In that case the power balance condi-
tion (

∑
Pi = 0) is automatically performed and syn-

chronous mode can exist for appropriate choice of pa-
rameters. We found the parameters for which there is
the synchronous mode in the grid. Then we investi-
gated dynamic stability of the synchronous mode to
transient disturbances of the power at the elements of
the grid in the form of a rectangular pulse of duration
τ and amplitude ∆Pi. Figure 5 shows the intervals
of safe power disturbances at the generators and con-
sumers. In this intervals (initial) synchronous mode of
the grid recovers after action of perturbation ends. No-
tice that 1th and 2th peripheral elements are least stable
to power disturbances.

We studied in detail the dependence of the magnitude
of the safe power disturbance at 1th peripheral element
on the length of its transmission line and its power. The
dependence is shown in Figure 6. One can see that
for each value of the power of a generator, Pg, there
is some critical length of the transmission line. Below
this critical length the magnitude of the safe power is
proportional to the power of a generator, while above
critical length it aproaches to zero and the synchronous
mode of the power grid is broken even by a weak power
disturbance. Thus, choosing the connection length less
than the critical one, we can greatly increase the stabil-
ity of the 1st element to the power disturbance. Sim-
ilar results obtained in [Menck et al., 2014] where the
model of the North European power grid with homoge-
neous couplings strength was considered. It was shown
that peripheral elements with low node degree have the
lowest stability to power disturbances. However, our
results show that the stability of peripheral elements to
disturbances not only depends on the degree of the ele-
ment, but also on the lengths of their connections to the
rest of the grid.

3 Conclusion
We studied the dynamics of two models of power

grids, namely model of the small hub cluster grid and
model of the Nizhny Novgorod power grid. For small
hub cluster grid partition of parameters plane into the
areas corresponding to different modes of operation are
obtained. For the Nizhny Novgorod power grid we
studied stability of synchronous mode against power
perturbations of its elements. We found that peripheral
elements of the power grid can be strongly or weakly
stable to power disturbances depending on the length of
the connection. Probably this result can help to prog-
noze the elements of the power grids more vulnerable
to power disturbance. We suppose to study this prob-
lem elsewhere.
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Figure 3. Phase portraits and waveforms corresponding to (a)
quasi-synchronous and (b) asynchronous modes of the small hub
cluster power grid model. Parameter values: λ = 0.7 (a) γ1 =
0.3, γ2 = 1.5 (b) γ1 = 1.7, γ2 = 1.6.
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(a)

(b)

Figure 4. (a) Schematic layout of power lines and substations with
a voltage from 220 kV and above in Nizhny Novgorod (adopted
from [Ministry of Energy of the Russian Federation, 2014] and (b)
corresponding topology of the Nizhny Novgorod power grid model.
Blue circles are consumers, green circles are generators. The lengths
of the transmission lines in km are shown on the edges of the graph.
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Figure 5. The magnitudes of safe power disturbances for con-
sumers (blue) and generators (green) in the Nizhny Novgorod power
grid model. Parameter values: τ = 10, α = 0.02, Pg =
0.002.

Figure 6. Diagram of the maximal safe power disturbance of 1th
element in the Nizhny Novgorod power grid model. The dashed line
indicates the critical length of the transmission line. Parameter val-
ues: τ = 100, α = 0.02.


