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Abstract: We study the structure of the multistable locking region seaniconductor laser subject
to optical feedback from a Fabry-Perot filter. Key paranmteganizing the degree of multistability
are uncovered, and they include the feedback phase, threxfittth and the frequency detuning.

Semiconductor lasers find many applications, for exampleptical telecommunication. Because of their high
material gain they are very sensible to external pertuoatiwhich may lead to instabilities and possibly even dhaot
laser emission. We show that this sensitivity can also leaddomplex structure of multistable continuous wave (cw)
and oscillatory emission. We consider here a laser sulyjemptical feedback from a Fabry-Perot filter — a frequently
used set-up to control the dynamics of a laser via the spquwvperties of the feedback light, which are determined
by the filter detuning and the filter width. The system can bel@efied by rate equations for the complex-valued laser
field E(t), the complex-valued filter fiel& (t) and real-valued laser inversidi(t), given by:

E(t) (1+ia)E(t)N(t) +KF(t),
TN(t) = P—N(t)—(1+2N(1)|E1)|?, (1)
F(t) = AE(t—-1)e S+ ([ia-A)F(t).

This model takes into account the time delagf the feedback light due to the propagation through the liaeki
loop and, hence, has the form of a delay differential equatim (1) time is rescaled with respect to the photon
decay time, which is typically in the order of picosecondse Taser parameters are the linewidth enhancement factor
a = 5.0, the ratio between electron and photon decay fime 100, and the pump parameter= 3.5. The feedback

is characterized by the feedback strength: 0.01, the feedback phasg, the linewidth of the filterA = 0.07, and

the detuningh = Qr — Qo, which is the difference between the filter frequeiy = —0.07 and the laser frequency
Qo. Importantly, the feedback pha€g takes into account the phase that the laser field accumaatiépropagates
through the feedback loop.
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Figure 1: Branch of cw solutions (a) as a functiontqf with stable (thick) and unstable (thin) parts; and bifuiaat
diagram with multistable locking region (shaded) in gk, C,)-plane (b), consisting saddle-node bifurcation curves
(thick) and Hopf bifurcation curves (thin) that meet at dedaode Hopf (SH) and Bogdanov-Takens (BT) points.

A cw solution of (1) has the foriE(t);N(t); F(t)) = (|Es|€*; N; |Fs|es+1®)) where the laser and the filter
field have the same frequenay, constant amplitudelEs|, |Fs|, a phase difference, and the laser inversioNs is
a constant. Figure 1 shows a bifurcation analysis as a fomaif the laser frequenc®y and the feedback phase
Cp, where the shading indicates multistable locking. The ilogkegion is bounded by different bifurcation curves,
which correspond to different locking-unlocking transits, such as saddle-node (S) and Hopf (H) bifurcations. For
the chosen set of parameters we find up to 3 simultaneoudliesta states. In addition there are more complicated
stable oscillatory dynamics arising from Hopf bifurcatsofmot shown in Figure 1). Overall, we find a large degree
of multistability between different types of solutions [¥ithich is organized by the feedback ph&eas well as the
feedback strengtk and the filter linewidth\.
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