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Abstract
The results of multiparametrical analysis of the opti-

mal chaos suppression problem in non-autonomous dy-
namic systems based on a two-stage parameter correc-
tion scheme are presented in the paper. The efficiency
of the scheme is proved by the comparison of numeri-
cal experiment results to analytical estimations gained
from Melnikov method.
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1 Introduction
Parametric space multidimensionality is characteris-

tic of many chaotic systems. It substantially compli-
cates the understanding of the unstable behavior dis-
appearance (appearance) mechanisms. High paramet-
ric perturbation sensitivity of chaotic systems makes
the investigation of such mechanisms even more com-
plicated. That is why the parameters and forms of
their perturbation optimal for chaos elimination are of-
ten uncertain. In this context investigations aimed at
the development of effective means of multiparametri-
cal analysis [Kuznetsov, Kuznetsov and Sataev, 1997;
Seyranian and Mailybaev, 2003] and generalization of
well-known chaos control methods [Warncke, Bauer
and Martienssen, 1994; Barreto and Grebogi, 1995;
Paula and Savi, 2008] applied to the multiparametrical
case come into importance.
A multiparametrical branch close to the optimal chaos

control problems and structural optimization is the op-
timal multiparametrical correction technique of chaotic
systems [Gorelik, Talagaev and Tarakanov, 2006]. The
possibilities of the technique are not limited only
to carrying the optimal chaos suppression out [Tala-
gaev and Tarakanov, 2008]. The characteristics of
the class of optimal corrective functions generated by
the technique provide the modification [Talagaev and

Tarakanov, 2007] of the system limit set (chaotic at-
tractor) from unstable state into the stable one regard-
ing the small perturbations on parameters. Meanwhile
it is possible to localize the unique limit set (satisfying
the demands of transient process stability and optimal-
ity simultaneously) in the phase space. According to
the control aims analysis in [Andrievskii and Fradkov,
2003], modification became a specific control aim hav-
ing arisen from chaos control problem. Its difference
from the chaos stabilization problem [Ott, Grebogi and
Yorke, 1990] is that the system stability character, but
not the quantitative characteristics of the target set (an
unstable periodic orbit embedded into a chaotic attrac-
tor), is given beforehand. Such aim is typical for meth-
ods of non-feedback controlling chaotic motion [Cha-
con, 2002; Lenci and Rega, 2003; Dzhanoev, Loskutov,
Cao and Sanjuan, 2007] where the efficiency of certain
external periodic perturbations being used is estimated
on the basis of Melnikov criterion [Mel’nikov, 1969;
Guckenheimer and Holmes, 1990] and optimal bifur-
cation control [Cao and Chen, 2005].
In the paper we extend the results of previous investi-

gations to set the general optimal multiparametric cor-
rection problem. The solution technique offered below
in fact represents the basis of general scheme of multi-
parametrical analysis. Its value is in the possibility to
investigate the optimal stabilizing perturbations com-
plementing each other. Comparing them we show that
optimal correction gives the full picture of chaotic dy-
namics disappearance. It includes enough information
to provide optimal ”chaos ↔ order” transition in pa-
rameter space, along with the corrected system optimal
dynamic regime identification and estimation of system
dynamics sensitivity to the particular form of paramet-
ric perturbations.

2 General correction problem
Consider a class of dissipative non-autonomous sys-

tems



ẋ = F (x, p, t) = f(x, p) + g(x, t),

where x = (x1, x2), f is a non-linear function, which
describes the unperturbed system dynamics, g – time-
periodic perturbation function, p ∈ Rm – a vector of
available parameters. It is suggested that: (i) among
the points xe

(k) = (xe
1(k), 0), k = 1, s, determined by

the condition f(x, p) = 0, there exists one hyperbolic
saddle point; (ii) perturbation influence leads to the sit-
uation of transverse intersection of the stable and un-
stable separatrices of the hyperbolic point, causing the
occurrence of homoclinic structure (interlacement). As
it is known [Guckenheimer and Holmes, 1990], condi-
tions (i)-(ii) cause the appearance of chaotic dynamics.
Here the system realizes a chaotic attractor AP , with
its structure determined by the geometry of the set of
unstable equilibrium states E = {xe

(k)}k=1,s.
Possible changes of the dynamic system regime are

linked to the presence of a special multiparametrical
perturbation. For this purpose we take a set of parame-
ters {p1, p2, ..., pr}, r ≤ m, where each pj , j = 1, r, is
perturbed by the function hj = hj(t) according to the
rule p 7→ p̂(·): p̂j(t) = pj(1 + hj(t)). The result of
the perturbation is the transformation of the parameters
into specific dynamic variables p̂(t) = p̂(h(t)), h ∈ U ,
where U =

{

h(·)∈L2 | |hj(t)|≤a, j=1, r
}

, which
cause the initial system transformation:

ẋ(t) = F (x(t), p, t) −→
p7→p̂(·)

ẋ(t) = F (x(t), p̂(t), t),

(1)
called multiparametrical correction. The aim of
correction is to provide the corrected system ẋ =
F (x, p̂, t) stability at satisfying the natural physical de-
mand of the ”small” parameters correction that is opti-
mal chaos suppression. After p 7→ p̂(·) the character of
the corrected system dynamics stability depends on the
value a in constraints |hj(t)| ≤ a, j = 1, r. If we for-
malize the ”small” demand with the maxmin criterion
the general correction problem will look like:

J1(h, a) = max
t≥0

max
1≤j≤r

|hj(t)| → min
a∈K

, (2)

where K={a>0 | F (a)}, the formal condition F (a)
is itemized with regard to the chosen stability criterion
of the system. Note that in (2) the minimum on the pa-
rameter a can be achieved at different h ∈ U . Solution
(2) gives the value amin – minimal correction radius of
the parameters pj , causing the transition to the stable
dynamics with the corresponding modification of the
system attractor.
In the paper the general problem investigation is con-

ducted for three different situations corresponding to
three basic forms of corrective influences. The object
of correction is the Duffing-Holmes oscillator [Guck-
enheimer and Holmes, 1990] written as:

ẋ1 = x2, ẋ2 = αx1−β x3
1−γx2+f cos(ω t). (3)

Our interest to this sample model of non-linear dy-
namics was inspired by its multiparametricability. In

particular, chaotic behavior (3) is defined by the com-
bination of the values of five parameters: α, β > 0 –
system own parameters available for correction, γ –
damping, f , ω – outer perturbation amplitude and fre-
quency.

3 Correction on Melnikov chaos criterion
In case of small perturbation (γ,f�1) Melnikov cri-

terion allowing analytical estimation of the effective-
ness of the given form of parametric influence on the
border of chaos appearance can be applied to the model
(3). The offered way of investigation in the field is
the formulation and solving two types of optimization
problem. Their solutions are found with regard to the
connection between the parameters of the system and
that allows supplementing our understanding of its dy-
namic characteristics.
Melnikov method is based on the analysis of the func-

tion ∆, which shows the distance between the stable
and unstable perturbed separatrices. For (3), the calcu-
lation of Melnikov function at any given time θ gives
[Guckenheimer and Holmes, 1990]:

∆0(θ) = A sin(ωθ) − C, (4)

A = πωf(2/β)1/2sech(πω/(2α1/2)),

C = 4γα3/2/(3β).

If Melnikov function ∆0(θ) changes its sign at θ, it
will be the condition of chaos occurrence. In all the
correction examples below we use the test values of the
parameters

α = 1, γ = 0.154, β = 4, f = 0.095, ω = 1.1.

Let us denote Melnikov function corresponding to the
corrected system as ∆̂(θ) and use Melnikov criterion to
specify the formal condition F (a) in the general task
(2). Then the set of a providing stable dynamics will
look as KM = {a > 0 | sign(∆̂(θ)) = const} (here
sign(·) – ”signum” function). Taking into considera-
tion that the dependence on parameter α is more com-
plex than on β, may (3) be corrected on parameter β
only: β 7→ β̂ = β(1 + h(t)), h(t) ∈ U . It will al-
low focusing attention to the possibility estimation of
different forms of parametric perturbation.

3.1 Static correction
Consider the correction variant (3) when h(t) ≡ h =

const: β 7→ β̂ = β(1 + h). It still has a constraint
|h| ≤ a. However, due to h(t) ≡ h it is clear that h
may accept only one value, that is why the constraint
turns to the equation h = a. According to (2), the
optimal static correction problem will look like

a→ min
a∈KM

. (5)

The task (5) is the simplest from the point of view
of forms of perturbation on the system parameter. It



is necessary to find minimal corrective amendment h∗

satisfying to |h∗| = amin = arg min
a∈KM

a at which the

corrected system dynamics is stable. In static correc-
tion h is an additional parameter in Melnikov function
expression. That is why taking β 7→ β̂ = β(1+h) into
account the expression (4) can be re-written as:

∆̂(θ) = Â sin(ωθ) − Ĉ, (6)

Â = πωf(2/β̂)1/2sech(πω/(2α1/2)),

Ĉ = 4γα3/2/(3β̂).

The values of parameters making system dynamic
chaotic are initial in correction. It means that with-
out the correction (h = 0) the inequality Â > Ĉ is
performed for (6). Hence the correction should lead
to performance of the reverse condition for (6), that is
Â ≤ Ĉ . However to solve the problem (5), it is im-
portant to know the values h placed on the regular and
complex dynamics boundary. They are the minimal
corrective amendment h∗ of parameter β and Â = Ĉ is
performed for them. Then from (6) we have

β̂ = D2(α, γ, f, ω), (7)

D(α, γ, f, ω) =

2
√

2γα3/2(3πfω)−1 cosh(πω/(2α1/2)).

Having put β̂ = β(1 + h) in (7) we get solution in the
form

h∗ = β−1D2(α, γ, f, ω) − 1. (8)

For the fixed configuration of α, β, γ, f, ω, the expres-
sion (8) allows finding the least corrective amendment
able to provide the space transition of parameters from
chaotic dynamics field into the regular one.
While considering the multiparametrical analytic con-

dition (8), it is interesting to study the dependence of
values placed on the ”chaos ↔ order” boundary on
the frequency of chaos-making perturbation ω, that is
the function h∗ = h∗(ω) = β−1D2(ω) − 1 with
other parameters values being fixed. The dependence
is shown in the Fig. 1. It means that at some fixed fre-
quency value ω̃ the value of minimal corrective amend-
ment h∗(ω̃) definitely corresponds to the point on the
curve. According to Melnikov criterion the condition
h > h∗(ω) defines the field of complex (including
chaotic) dynamics in the Fig. 1.
Note that in the frequency interval (ω, ω) the value of

the corrective amendment is negative, at the same time
there exist perturbation frequency values ω = 0.2645
and ω = 1.6608 when h∗(ω) = 0, that is the system
need not be corrected. In particular, the relation (8)
for the frequency ω = 1.1 gives the estimation h∗ =
−0.588. It is unsatisfactory from the point of view of
”small” perturbation on the system parameter but its
sign shows the necessity of lessening of parameter β
under correction.

Figure 1. The regular and complex dynamics boundary at optimal
static correction of the system (3) on parameter β.

3.2 Dynamic correction with the known perturba-
tion structure

Here we continue the studying of correction (3) on a
single parameter: β 7→ β̂(t) = β(1+h(t)), though now
corrective perturbation is time-changed. The structure
of the constrained ( |h(t)| ≤ a) corrective perturba-
tion is known and represents a periodic time function
h(t) = a cos(Ωt), a > 0, Ω is frequency.
Having changed β 7→ β̂(t) in (3) and calculated Mel-

nikov function we get [Chacon, 2002]:

∆̂(θ) = ∆0(θ) − aB sin(Ωθ), (9)

B = (6β)−1πΩ2(Ω2 + 4) csch(πΩ/(2α1/2)).

May (9) be included in the condition, which de-
termines the structure of set KM = {a >
0 | sign(∆̂(θ)) = const} in (2). Then we have the
following problem

max
t≥0

|h(t)| → min
a∈KM

. (10)

For the known corrective perturbation structure
h(t) = a cos(Ωt) the problem (10) is reduced to mini-
mization of the parametric perturbation amplitude a on
the set of values providing system dynamics stability.
The solution of (10) gives the analysis of the function

(9). At resonance frequency correlation Ω = zω, z – an
integer, the condition of sign constancy of (9) expresses
the inequality (A − C) ≤ aB. It means the value of
the minimal amplitude amin = arg min

a∈KM

max
t≥0

|h(t)|
which provides optimal chaos suppression lies on the
”chaos ↔ order” boundary, that is amin = (A−C)/B.
Thus the solution of (10) are the conditions: h∗(t) =
amin cos(Ω t), a ≥ amin, Ω = zω. The dynamics is
chaotic at 0 < a < amin.
However the estimation of amin that we got is ”local”

as it is true only for fixed values of α, β, γ, f, ω and z.
For example, for the frequency ω = 1.1 the calcula-
tion at z = 1 gives amin = 0.095, but at z = 2 we
shall get amin = 0.081. In Fig. 2 we can see the gen-
eral dependence amin(ω) at different z in the resonance
correlation Ω = zω (we take into account resonances
z = 1, 2, 3, 4). Values ω = 0.2645, ω = 1.6608 are the
roots of the equation amin(ω) = 0. They correspond
precisely to the values ω, ω, got while solving optimal
static correction problem in Ch. 3.1 at h∗(ω) = 0.



Figure 2. Optimal ”chaos order” boundary, formed by the effective
resonance correlation in the task (10) under the correction of the sys-
tem (3) on parameter β.

The study of the frequency interval (ω, ω) and the val-
ues amin(ω) > 0 (at different z) correspondent to it
allows deepening our understanding of the peculiar-
ities of chaotic dynamics correction by the function
h∗(t) = amin cos(Ω t). It is obvious from Fig. 2 that
in reality amin(ω) can be achieved only at some z and
for a certain frequency interval wi = (ωi, ωi+1) ∈
(ω, ω), i = 5 − z, where ω = ω1 < ω2 < ... <
ω5 = ω, ∪4

i=1wi = (ω, ω) (in Fig.2 ω2 = 0.531,
ω3 = 0.746, ω4 = 1.265). For the function h∗(t) =
amin cos(Ωt) every interval wi unambiguously defines
the effective resonance correlation Ωz = z∗ω, where
z∗ ∈ {1, 2, 3, 4}, ω ∈ w5−z∗ , such that at every
wi there exists the value z∗ for which a∗min(ω) =
amin(ω, z

∗) ≤ amin(ω, z) is performed. Thus all the
points (ω, a∗min(ω)), ω ∈ (ω, ω) in Fig.2 make a curve
which is the optimal ”chaos↔order” boundary. As a
result, if we know the interval wi the given value ω
belongs to, we can find z∗ and the optimal amplitude
amin(ω, z

∗) of the chaos-suppressing corrective pertur-
bation h∗(t) = amin(ω, z

∗) cos(z∗ω t) and gain a more
effective solution of the problem (10).

4 Optimal multiparametrical correction tech-
nique

Let us consider a more complicated variant of correc-
tion (problem (2)) when along with finding the correc-
tion radius amin we should find the structure of the op-
timal corrective function h0(t) ∈ U . The application
of Melnikov criterion becomes a problem as the para-
metric perturbation structure is unknown. Thus, in this
case the local instability of the system trajectories is
used as a chaos criterion.

4.1 Problem statement
Consider the time interval [0, T ] where T is time, on

which the solution of the system ẋ = F (x, p, t) is de-
termined. If the choice of T is made under the con-
dition T >> T ∗ (that is the moment is deliberately
taken longer that the transient process [0, T ∗]), it will
be possible to study the general problem (2) on the fi-
nite interval [0, T ].
Let x(t) and x̄(t) = x(t) + x̃(t) be two trajectories

of the corrected system ẋ = F (x, p̂, t) with initial con-
ditions x(0) = x0 and x̄0 = x0 + x̃0 (||x̃0|| < ε, ε –

small enough) belonging to the attraction basin BA of
the attractorAP . Attractor AP is chaotic at h ≡ 0 and
any trajectory beginning on it is unstable according to
Lyapunov. It means that the upper Lyapunov exponent
is positive: Λ1 = max

i=1,n
{ lim

t→T
(t)−1 ln ||x̃i(t)||} > 0.

Then in the problem (2) the correction radius value a
in the constraints |hj(t)| ≤ a, j = 1, r, determines the
evolution of small perturbation x̃(t) along the corrected
trajectory x(t), chosen for the stability character anal-
ysis. In this case Λ1 is the function Λ1 = Λ1(a). This
allows determining the set K in the form KΛ = {a >
0 | Λ1(a) < 0}.
Let us introduce an additional optimality criterion

J2(h, a) =

∫ T

0

∑r

j=1
h2

j (t)dt→ min
h∈U

. (11)

If a is fixed the condition (11) requires the desired cor-
rective function h0 to provide a minimum consumption
of energy on a correction process. By strengthening (2)
with (11), we have the optimal multiparametrical cor-
rection problem:

J1(h
0, a) = max

0≤t≤T
max

1≤j≤r
|h0

j (t)| → min
a∈KΛ, h0∈U0

,

(12)
where the minimum is sought for admissible values
a on the set KΛ providing the corrected system sta-
bility on [0, T ] and for the function h0 ∈ U0 =
Argmin

h∈U
J2(h, a). The optimal radius of correction

amin found for the components h0
j (t), j = 1, r, pro-

vides the transition of h0(·) 7→ h∗(·) from the cor-
rective function with the structure h0 to the optimal
function h∗. Thus the solution of (12) is the pair
(amin, h

∗(t)) which provides the stable regime of the
corrected system determined by the |h∗j (t)| ≤ amin.

4.2 Two-stage correction scheme
The order of optimality criteria in (12) allows solving

it in two steps through the following optimal multipara-
metrical correction scheme

J2(h(·), a)
I→ min

h(·)∈U
⇒ J2(h

0(·), a) →

J1(h
0(·), a) II→ min

a∈KΛ,h0∈U0

⇒ J1(h
∗(·), amin).

(13)
Realization of the scheme (13) presupposes the com-

bination of optimal control theory methods with com-
puter simulations of the system dynamic behaviour.
At the stage I it is necessary to define the dynamic fea-

tures of the desired correction functionh0(t) by solving
the problem J2(h

0(·), a) = min
h(·)∈U

J2(h(·), a). For the

fixed a on the basis of the maximum principle [Pontrya-
gin, Boltyanski, Gamkrelidze and Mischenko, 1962]
we seek for the structure of h0(t), t ∈ [0, T ], that
transfers the corrected system with the initial condition
x0 ∈ BA to the set ME = {(x, h)| f(x, p̂) = 0} at
the interval [0, T ] with the condition (11). Dynamics



peculiarities on the set ME at h ≡ 0 coinciding with E
are shown in [Talagaev and Tarakanov, 2008].
Introduce Hamilton-Pontryagin function

H(x, h, ψ, t) = ψTF (x, p̂, t) − ||h||2
/

2.

For the process

C0 =
{

x0(t), (h0(t) = h(x0(t), ψ(t)), a), t ∈ [0, T ]
}

where x0(t) is corresponding solution of (1) under
h0(t), with the boundary conditionsx0 ∈ BA, x0(T ) ∈
ME to be optimal it is necessary [Pontryagin, Boltyan-
ski, Gamkrelidze and Mischenko, 1962]:
1: there exists a non-zero ψ(t) ∈ Rn satisfying the

equation ψ̇(t)=−(∂/∂x)H(x0(t), h0(t), ψ(t), t);
2: the function h0(t) satisfies the maximum condition

H(x0(t), h0(t), ψ(t), t) = max
h∈U

H(x0(t), h, ψ(t), t);

(14)
3: the transversality conditions ψ0⊥Ω(x0) and
ψ(T )⊥Ω(x0(T )) are performed.
The condition (14) allows finding the optimal struc-

ture of the vector-function h0(t) = (h0
1(t), ..., h

0
r(t))

in the form

h0
j (t) = sat(h̃j(t)) =

{

h̃j(t), |h̃j(t)| ≤ a,

a · sign(h̃j(t)), |h̃j(t)| > a,
(15)

where h̃j(t) = ψT (∂/∂hj)F (x(t), p̂(t), t) is the solu-
tion of equation (∂/∂hj)H(x(t), h, ψ(t), t) = 0. As
the components h0

j (t) are independent from each other
the minimization of a at simultaneous correction on
several parameters is possible.
The process C0 defined by the maximum principle is

found from the 2n-system with the help of (15)

{

ẋ = (∂/∂ψ)H(x, h, ψ, t),

ψ̇ = −(∂/∂x)H(x, h, ψ, t),
(16)

with orthogonal initial conditions

x0∈BA, ψ0 =
{

ψ∈Rn |
∑n

i=1
ψi(0)xi(0)=0

}

.

(17)
Dynamic features of the class of corrective functions

(15) were discussed in [Talagaev and Tarakanov, 2008;
Talagaev and Tarakanov, 2007]. It was shown that the
process C0 provides attractiveness of the corrected tra-
jectories x0(t) to the set ME . It is significant that C0

preserves the conditions of the system attractor exis-
tence (localized on ME) with its stability dependent
from the value a.
At stage II the problem is being solved

J1(h
∗(·), amin) = min

a∈KΛ,h0∈U0

J1(h
0(·), a).

The minimization of correction radius a is performed
through numerical testing of chaos suppression quality:

step 1: two close initial conditions x0
0 = (x0

01, x
0
02)

T ,
x̄0

0 = (x̄0
01 + ε, x̄0

02 + ε, )T , ε << 1, are specified
and we calculate the corresponding ψ0, ψ̄0 according
to (17);
step 2: for x0

0, ψ0 and x̄0
0, ψ̄0 on the given interval

[0, T ], the system (16) is integrated with (15) by the 4-
order Runge-Kutta method. A comparison of the pro-
cesses C0 and C̄0 shows the small perturbation evolu-
tion x̃0(t) = x̄0(t) − x0(t) along the trajectoryx0(t),
necessary for defining the corrected system stability
character;
step 3: the dynamics of the value Λ1(t, a0) =
T−1 ln(ε−1||x̄0(t)−x0(t)||) at [0, T ] is tracked for the
chosen value a0 < 1. If Λ1(t, a0) < 0 for all t → T ,
the calculations Λ1 will be repeated for the sequence
al < ... < a1 < a0 until amin = min

a∈KΛ

{am}m=0,l is

found.
This procedure does not need linearization and uses

an approximate method of calculation of the up-
per Lyapunov exponent described in [Andrievskii and
Fradkov, 2003]. The found optimal process C∗ =
{x∗(t), (h∗(t), amin), t ∈ [0, T ]} provides an optimal
dynamic modification of the chaotic attractor into the
unique invariant set correspondent to the stable regime
of the corrected system.

4.3 Correction scheme realization and compari-
son of the results

In the general case in (3) α and β are correctable:

ẋ1 = x2, ẋ2 = α̂(t)x1 − β̂(t)x3
1 − δx2 + f cos(ω t),

(18)
where α̂(t) = α(1+h1(t)), β̂(t) = β(1+h2(t)). Then

H = ψ1x2 + ψ2(α̂x1 − β̂ x3
1 − δx2 + f cos(ω t))−

0.5(h2
1 + h2

2).

From the optimality conditions of the stage I of the
scheme (13), we get a system of conjugate variables

ψ̇1 = ψ2(3β̂(t)x2
1 − α̂(t)), ψ̇2 = −ψ1 + δψ2, (19)

with the initial condition ψ0 = (−x02, x01)
T taken for

x0 = (x01, x02)
T from (17) and the components of the

optimal corrective function

h0
j (t)=sat(h̃j(t)), h̃1(t)=αx1ψ2, h̃2(t)=−β x3

1ψ2.
(20)

The dynamics of the corrected system (18) subject
to the condition |h∗j (t)| ≤ amin = 0.05, j = 1, 2,
is shown in the Fig.3,4. In course of correction ra-
dius minimization the system (18)-(19) was integrated
with (20) at x0 = (0.1, 0.1)T , ε = 3 · 10−5, t ∈
[0, 1000] and integration step d = 0.01. For con-
trast in Fig.3,4 we show the solution of the problem
(10) achieved in course of correction β by the function
h∗(t) = amin(ω, z

∗) cos((ωz∗)t). Its minimal ampli-
tude value amin(ω, z

∗) = 0.081 placed on the optimal



Figure 3. The solution of the problem (12): optimal dynamics of
the corrected system (18) with amin=0.05.

Figure 4. The solution of the problem (12): trajectories of the cor-
rected system (18) in the phase space with amin=0.05.

chaos boundary (Fig.2) is achieved for the resonance
z∗ = 2 at ω = 1.1.
The comparison of problem (12) with (5) and (10)

gives us interesting information. The first feature is
the saturation effect of the optimal functions h∗1(t),
h∗2(t) on the upper/lower boundary edges (see Fig.3),
arising after the optimal transient process termination
and complete stabilization of the system. The satura-
tion character is independent from the number of pa-
rameters under correction. For instance, if in prob-
lem (12) the correction of the system is done at β only
(h∗1(t) ≡ 0), the stable regime will occur at the greater
value amin = 0.152, but h∗2(t) will still be saturated on
the lower boundary edge. This fact agrees with the so-
lution of problem (5) where the corrective amendment
to parameter β for perturbation frequency ω = 1.1 is
h∗ = −0.588. Its sign corresponds to the function
h∗2(t) saturation on the lower boundary edge.
The second peculiarity is the localization of the

unique orbit of the system (18). Its stabilization is
caused by optimal correction of the parameters (see.
Fig.4). The comparison of Fig.4 with the dynamics
in Fig.3 shows that the most of the time [0, T ∗] the
transient process looks like a regular trajectory move-
ment along the orbit localized in the vicinity of the

equilibrium state (−
√

α/β, 0) = (−0.5, 0) (multista-
bility may cause similar movement in the vicinity of
(
√

α/β, 0)). However in the end of the transient pro-
cess the stabilized regime looses its stability. The sys-
tem finds a new type of motion stable at T > T ∗ (peri-
odic oscillations) along the closed orbit, which includes
the point(0.5, 0). In the Fig.4 it is shown that the lo-
calization of the optimal stable orbit almost precisely
coincides to the solution of (10) for z∗ = 2.

5 Conclusion
In the paper we present the mechanism of multi-

parametrical analysis of the problem of optimal tran-
sition from chaotic dynamics to the regular one in non-
autonomous systems. The two-stage optimal multi-
parametrical correction scheme constitutes the frame-
work of the analysis as the most general and flexible
variant of general correction problem solution. We
compare its results to analytical estimations which rep-
resent particular cases of solution of the general prob-
lem with Melnikov criterion. The offered correction
technique applicable to a wide class of chaotic systems,
allows comparing the efficiency of different forms of
parametric influence and finding the most appropriate
ways of influence on the parameters which provides op-
timal chaos suppression.
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