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ABSTRACT 

In this paper the method of quasi-sliding mode control is 
extended via delayed feedback for stabilizing unstable fixed 
points of uncertain economic systems which exhibit chaotic 
behavior. This method, in contrast to quasi-sliding method 
proposed for such systems, doesn’t require the position of 
unstable fixed points. The control scheme is presented and the 
performance of the proposed approach is examined by applying 
it to two chaotic economic models, the Behrens Feichtinger and 
the Cournot duopoly model with complements goods. 
Simulation results show the effectiveness and feasibility of the 
method for chaos control in uncertain chaotic models. 
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1.INTRODUCTION 

So many phenomena take place in real world which can no 
longer be illustrated with the aids of simple models.  
Economical systems are one of the kinds. It is unanimously 
accepted that economy belongs to very complex systems which 
usually take the form of being either stochastic or deterministic. 
It is due to the fact that the linear models could no longer 
anticipate the ongoing events of the system; hence the 
economists started developing complex systems for 
macroeconomic and microeconomic theories. 

Goodwin probably was the first economist to realize the 
importance of nonlinear mechanism for the economical systems 
[1] as one of his works; Goodwin enhanced and reduced the 
deficiencies of the Keynesian fiscal policies. Up to now, many 
researchers spending time on the matter, for example 
Majumdar, Mitra and Nishimura [2] for overview of nonlinear 
dynamic theory in economics, K. Ishiyama and Y. Saiki [3] for 
their quantitative analysis of Keynes-Goodwin macroeconomic 
growth model, M. Szydlowski, A. Krawiec [4] for investigating 
the stability problem of the Kaldor-Kalecki business cycle and 
so on. 

The economical systems due to their complex dynamics 
usually evince chaotic manners. Researches on chaotic 
behavior and its effect on economical systems have attracted a 
great deal of research interests in recent years. For the first 
time, Strotz et al. [5] states that chaotic dynamics can exist in 
an economics model. Also, some researches show that even 
oligopolistic markets, which first proposed by Cournot in 1838, 
may exhibit chaotic behavior under certain condition[6, 7]. In 
another work [8], the authors show that . A simple Cournot 
dynamic model with nonlinear reaction functions may give rise 

to chaotic dynamic. It states that when the nonlinearity gets 
strong, the model shows chaotic fluctuations. 

Chaotic behavior in an economic system is often an 
undesirable phenomenon which prevents the prediction in long 
time period, and may threaten the safety of investment. In [6], it 
has been shown that the performance of a chaotic economics 
can be improved by controlling chaos. Chaotic systems have 
infinitely many fixed points or periodic solutions in their 
chaotic attractors [9]. Stabilizing the periodic solutions of a 
chaotic market model may increase economic efficiency [10]. 

Since 1990, various control algorithms for chaos control by 
stabilizing the periodic orbits or fixed points of nonlinear 
dynamic systems have been proposed. Ott, Grebogi and Yorke 
[11] presented a perturbing method (OGY) for chaos control by 
linearizing the nonlinear map of the system. The OGY method 
was successfully applied for chaos control in some economic 
systems, e.g. see [12]. Also Pyragas [13] presented a method 
for chaos control by using a delayed feedback signal. 
Stabilizing the first order fixed point of the Cournot duopoly 
via delayed feedback control has been investigated in [14]. 
Other nonlinear control methods such as feedback linearization 
[15], continuous time sliding mode [16] and adaptive Lyapunov 
based control [17] have been greatly used for chaos suppression 
in numerous physical systems. Many models of economic 
systems are illustrated though nonlinear discrete maps [18]. If 
the governing equations of such systems are exactly known, 
then one can easily used the OGY or the Pyragas method to 
design stabilizing controllers for them. However due to 
uncertainties, determining an exact governing equation for a 
system is not possible, and the parameters of a system always 
have some uncertainties. So introducing a robust control 
strategy for chaos control in such systems is necessary. One of 
the famous nonlinear methods used as a robust control is the 
sliding mode. Sliding mode control initially developed for 
continuous time systems [19]. 

Due to some technical difficulties it cannot be used directly 
for discrete dynamical systems generated by nonlinear maps. In 
[20, 21] some concepts for adapting the sliding mode method to 
use in discrete time systems was presented. The modified 
method is called the quasi sliding mode control which is used to 
control chaos in [22, 23]. But in [22, 23], the desired input 
which is the fixed point should be provided. Computing the 
fixed point in system in uncertain models couldn’t be 
calculated.  In this paper it is shown that how combining the 
delayed feedback proposed by Pyragas [13] and the quasi-
sliding mode method can be used for stabilizing the fixed 
points of chaotic systems without knowing the position of fixed 
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point. Then the proposed method is applied for chaos 
elimination for two economic models. The main advantage of 
the new strategy is its ability to control chaos when the actual 
parameters of market are not available or have some 
uncertainties. 

 
2.  CHAOS CONTROL USING DELAYED FEEDBACK QUASI-
SLIDING MODE CONTROL 

In this section, first a Quasi-sliding mode control scheme 
presented in [23] is discussed. Then, by extending it the 
Delayed Feedback Quasi-Sliding Mode Control is introduced, 
which is later used for stabilization of unstable fixed points of 
chaotic systems.  
 
2.1. QUASI-SLIDING MODE CONTROL 

In this subsection, the concept of sliding mode control in 
discrete systems, known as the quasi-sliding mode, is presented 
based on the scheme introduced in [20]. 

Consider the system which can be viewed as number of 
discrete nonlinear single-input single-output (SISO) systems 
(For every output there is input): 

( )
( )

1 1

1

,..., , ,...,

,..., , ,...,
k k k k n k k b

k k k c k k d k

x f x x u u

g x x u u u
+ − − −

− − −

=

+
 (1) 

Where 1kx +  is the output, ku is the control input, (.)kf  and 
(.)kg  are smooth nonlinear functions of past values of the 

input and output, and the constants n, b, c, and d are all positive 
integers. 

For this system, it is assumed that the function (.)kg  is 
bounded away from zero. Let us assume that a model for (1)
exists, in the form of 

( )
( )

1 1

1

ˆˆ ,..., , ,...,
ˆ ,..., , ,...,

k k k k n k k b

k k k c k k d k

x f x x u u

g x x u u u
+ − − −

− − −

=

+
 (2) 

where (.)ˆ
kf  and (.)ˆkg

 
are estimated functions of (.)kf  

and (.)kg , respectively. The switching function is defined as a 
linear combination of the past tracking errors as: 

1 1k k k p k pS e e eα α− −= + + +…  (3) 
where p is an integer which can be chosen same as order of 

system and the coefficients 1,..., pα α  in (3) are selected to 
make the switching function a stable linear combination of the 
past tracking errors. In other words, all of the roots of the 
polynomial 1

1
p p

pz zα α−+ + +  should lie inside the unit 
circle. This way, after a finite period of time, the tracking error 
will converge towards zero. 

The desired input is d
kx  , so the tracking error can be 

defined as: 
d

k k ke x x= −  (4) 
In contrary to the continuous systems, “sliding mode” cannot 

be achieved for discrete systems and hence we have to try 
reaching a quasi-sliding mode. Some concepts regarding this 
matter can be found in [20]. A system is said to be in a quasi-
sliding mode when the dynamics of Sk meets the following set of 
conditions: 

I) Starting from any state, the Sk sequence moves toward 
the quasi-sliding surface, defined by Sk=0, and crosses it in a 
finite period of time. 

II) Once the surface is crossed by the first time, the Sk 
value changes around the surface in a zigzag way. 

III) The zigzag motion is stable and stays inside a fixed 
band. 
Conditions I, II, and III can be mathematically expressed as: 

( )1 0k k kS S S+ − <  (5)
and 

2
1

sgn( ) sgn( )
sgn( ) sgn( )

| |
k k

k k
k

S S
if S S

S ξ
+

+

=⎧
= − ⇒ ⎨ <⎩

 (6)

whereξ is the fixed bound mentioned in the third 
condition. 

Let us consider that, in closed loop, the switching function 
will exhibit the following behavior [20]: 

( ) ( )1 1 1ˆ .sgn , 0kk k k SS x x ε ε+ + += − − >  (7)
Starting from (7) and using (1), and (3)  one can determine 

that the input signal must be: 

( ) ( )( )1 1 1
1 ˆ ... sgn

ˆk
d

k k k p k p k
k

u f x e e S
g

α α ε+ − +=
−

− + + + +  (8)

We can now readily check if such behavior for the 
switching function can guarantee the conditions in (5) and (6). 
Inserting (7) right into (5) we get: 

( ) ( ) ( )( )1 1 1

1 1

ˆ .sgn

ˆ

k k k k k k k k

k k k k

S S S S x x S S

x x S S

ε

ε

+ + +

+ +

− = − − −

≤ − −
 (9)

Hence, it is sufficient to take 
Hε η= (10)

where η  is an arbitrary constant larger than unity and H  is an 
upper bound for the modeling error, 

1 1ˆ ,k kH x x k+ +> − ∀  (11)
The first condition in (6) is also easy to check. The 

expression for 2kS +  can be directly derived from (7).  

( ) ( )2 12 2ˆ .sgnk kk kS Sx x ε+ ++ += − −  (12)
Considering that kS  has just crossed the sliding surface, 

1 )sgn( sgn( )k kS S+ = − , thus: 

( ) ( )2 2 2ˆ .sgnk kk kS Sx x ε+ + += − +  (13) 
Taking into account the conditions in (10) and (11), the 

first condition in (6) is guaranteed. The second requirement in 
(6) needs the consideration of the closed loop system in which 
one gets the following representation for the closed-loop 
dynamics of the switching surface: 

( )

1 1

1

ˆ1
ˆ ˆ

1 1 sgn
ˆ ˆ ˆ

k k
k k

k k
k k

dk k k
k k

k k k

S S
g g

f f
g g

g g g
x S

g g g

α

ϑ ε

+

+

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (14) 

where, 
2

2 1 1

1 1 1 1

( )
( )

k

p p k p p k p

e
e e

ϑ α α
α α α α α

−

− − + −

= − +
+ − −

 (15) 

The only recurrent terms in kS  are the first and the last 
terms on the right hand side. The latter is a bounded function of

kS , so considering that 1 1α < , the switching function will 
remain stable only if : 

1 1
ˆ

k

k

g
g

− <  (16) 
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Remark: Although the stability of the proposed control 
technique has been proved theoretically, there are some 
technical problems such as strong chattering in implementation 
of control law due to use of sign function in Eq. (8). To 
overcome this problem one can use the saturation function 
instead of sign function: 

( ) ( )
1S S

Ssat
Ssign otherwise

φ φ
φ

φ

⎧ <⎪⎪= ⎨
⎪
⎪⎩

 (17)

where φ  is a positive small number. In this case, some 
steady state error is generated which implies that there exists 
some error between the stabilized trajectory and the actual one. 
By decreasing φ  to zero, the mentioned error will converge to 
zero. 

 
2.2. DELAYED FEEDBACK QUASI-SLIDING MODE 
CONTROL 

In this subsection, the concept of delayed feedback used to 
stabilize unstable fixed points is merged with sliding mode 
control. In order to reach a stable first order fixed point in 
discrete systems, following conditions should be satisfied. 

1 , 0k k kx x u−= =  (18) 
So, the error could be defined, 

1k k ke x x −= −  (19) 
But if this error is used in the quasi-sliding mode 

controller, it makes the system to repeat the last steps but with 
non-zero control signals. In order to overcome this problem, we 
redefine the sliding surface as,  

1 1 1 1
1

1ˆ 1k k k p k p k k
k

S e e e g u
c

α α− − − −
−

⎛ ⎞
= + + + + −⎜ ⎟

⎝ ⎠
…  (20) 

where kc is one at first stages, which results in normal 
sliding surface, but kc  will change adaptively in time, so the 
effect of control signal also enters the sliding surface and the 
errors and control signals in the closed loop system 
simultaneously converges to zero. 

Starting from (7) and using (1), and (20) one can determine 
that the input signal must be: 

( ) ( )( )1 1 1
ˆ ... sgn

ˆk
k

k k k p k p k
k

u
c f x e e S

g
α α ε− − +=

−
− + + + + (21) 

It can be shown similar to quasi sliding mode, this scheme 
is stable. An adaptive law which results in convergence to the 
unstable fixed point in chaotic system is found to be: 

2 1
1 0, 0 1 , 1

1
k k k

k
k

c u if S
c c

if S
γ δ

γ
δ

− −
−

⎧ − <⎪= < < =⎨ >⎪⎩
 (22) 

  
 

3. CHAOS CONTROL OF COURNOT MODEL WITH 
COMPLEMENTARY GOODS MODEL 

The dynamical system model of Cournot Model with 
Complementary Goods can be obtained based on the model 
suggested in [8]. This model explains the ongoing dynamical 
behavior between two-market economy with complementary 
goods x and y. We are interested in the dynamic interactions 
between the two firms which can be described by  

2
1

2
1

( 1)

( 1)
k k

k k

x y

y x

α α

β
+

+

= − +

= −
 (23)

where ,α β are coefficients of system. To have 
economically meaningful system, the domain of parameters 
should be restricted [8]. Thus, when the parameters of the 
system is restricted to 

( ){ }, | 0 2and 0 2A α β α β≡ ≤ ≤ ≤ ≤  (24) 
This parameter restriction prevents trajectory divergence in the 
system.  Also it is known that, under certain conditions for the 
values of α and β , the above described system exhibits 
chaotic behavior. The aforementioned economic system in Eq. 
(23) exhibits chaotic behavior with the following parameters 
[8]: 

1.75, 1.1β α= = (25)
Using mathematical and simulation, authors in [8] showed that 
for some values of α and β, the long-run average profit of the 
system is higher in chaotic region than its stationary points. For 
example, they show that when the value of α is fixed to 1.1, the 
long-run average profit of first firm is higher than the 
corresponding stationary profit when the value of β is larger 
than about 1.7, while the long-run average profit of second firm  
is less than its corresponding stationary point. This will 
continue until the value of β reaches 1.8, where the long-run 
average of firm 2 is become higher than its stationary point. 
Form such example, one may see that the profit of the biggest 
firm (second firm) is less than its corresponding stationary 
profit in a bound of β = [1.7, 1.8], while the first firm is 
exceeding its stationary profit. Thus, for second firm to hold its 
position in the market, it should apply a control force to 
compensate such “Relative Loss”. Moreover, in a bound of β = 
[1.7, 1.8] both firms is in the chaos region and their long-run 
profit is not a “profitable” situation for both. 

All this, will convince a manager to apply a private control 
strategy to this system in order to “re-maximize” the profit 
when needed. By considering some uncertainties in the model 
parameters, the method proposed is applied to the system. 

In the previous section we derived the a nonlinear control 
techniques for suppressing chaotic dynamics in the system by 
adding a feedback control forcing signal. So, we chose to add 
control signal to the second state of the Eq. (23). The new 
governing equation including the form of control force, u , can 
be written as: 

2
1

2
1

( 1)

( 1)
k k

k k k

x y

y x u

α α

β
+

+

⎧ = − +⎪
⎨

= − +⎪⎩
 (26) 

By substituting the second relation of Eq. (26) in the first 
one, the SISO format of the equation is obtained as, 

2 2
1 1( ( 1) 1)k k ky y uβ α α+ −= − + − +  (27) 

This input force can be assumed as the compensated policy 
of the second firm to control over the chaos in the market. The 
second firm inaccuracy of the other firms’ production 
prediction led to unstable patterns. This may alter the profit 
maximization process of the firm which is described by the 
nonlinear model. Thus, a feedback force should be added in 
order to stabilize the system whenever needed. 

Comparing Eq. (26) with Eq. (1) one may obtain, 
2 2

1( ( 1) 1) , 1k k kf y gβ α α−= − + − =  (28) 
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Assume that the exact value of α and β are unknown, their 
estimated value are denoted by α̂ and β̂ . One may set the 
following relations to show the bounds of uncertainties: 

 ˆˆ ,α βα α ε β β ε− < − <  (29) 

where αε and βε  are the upper limits of the uncertainties. 
Defining the tracking error as, 

1k k ke y y −= −  (30) 
one may obtain the sliding surface as, 

1 1 1 1
1

1ˆ 1k k k k k
k

S e e g u
c

α − − −
−

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
 (31) 

Considering Eq. (11) one may write, 

1 1

2 2 2 2
1 1

ˆ

ˆ ˆ ˆ( ( 1) 1) ( ( 1) 1)

k k

k k

H f f

y yβ α α β α α

+ +

− −

> −

= − + − − − + −
 (32) 

one may easily see that, 

( ) ( )( ) 2 2
1

1 1
2 2

1

ˆ ˆ( ( 1 1) 1)ˆ
ˆ ˆ ˆ( ( 1) 1)

k
k k

k

y
f f

y

β αβ ε α ε

β α α

−
+ +

−

+ + − + −
− ≤

− − + −
(33) 

Thus, we may set, 

( ) ( )( ) 2 2
1

2 2
1

ˆ ˆ( ( 1 1) 1)

ˆ ˆ ˆ( ( 1) 1)

k

k

y
H

y

β αβ ε α ε

β α α

−

−

+ + − + −
=

− − + −
 (34) 

So, the control action, according to Eq. (21) can be 
obtained as, 

( )1 1
ˆ satk

k
k k k kcu

S
f y e Hα η

φ−−=
⎛ ⎞⎛ ⎞

− + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (35)

where φ is the boundary thickness and 

2 1
1 0, 0 1 , 1

1
k k k

k
k

c u if S
c c

if S
γ δ

γ
δ

− −
−

⎧ − <⎪= < < =⎨ >⎪⎩
 (36) 

As 1kg =  the Eq. (16) representing the stability criterion for 
switching function, is already satisfied.  
Regarding Eq. (29), the following uncertainties are considered 
in the simulation: 

ˆˆ0.02 0.02α βε α ε β= =  (37)

where ˆ 1.11α =   and ˆ 1.76β = . Also 1α is assumed to be 0.1 
and 00.01 , 0.4 , 0.05δ γ φ= = = . 
Also, it is to be noted that the fixed point of the system can be 
found by solving the following Equation: 

2 2( ( 1) 1)f fy yβ α α= − + −  (38)
For above parameters, one may find only a meaningful solution 
for such equation as: 

0.474324fy =  (39)
The simulation results for this uncertain system are shown in 

Figure 1. It is observed that, the fixed point of the system , fy , 
is stabilized and the control action converge to zero. 
It is to be noted that the amplitude of the control signal is 
sufficiently small and converges to zero in a small finite 
duration of time. 
 
 
 
 

 
Figure 1-  Time series of state y and control signal and distance 

from sliding surface in the Cournot model (controller starts at step 30) 
 

4.CHAOS CONTROL OF BEHRENS-FEICHTINGER MODEL 
The Behrens-Feichtinger model denotes a simple micro-

economical model [24] of two firms X and Y competing on the 
same market of goods. The firms perform active investment 
strategies, i.e. their temporary investments depend on their 
relative position on the market. The strategies are asymmetric. 

The firm X invests more when it has an advantage over the 
firm Y while the firm Y invests more if it is in a 
disadvantageous position to the firm X. The sales kx and ky of 
both firms are measured in discrete time periods k = 1, 2,3,… 
and the system governing equations are modeled by [10]: 

( )

( )

1

1

(1 )
1 exp

(1 )
1 exp

k k
k k

k k
k k

ax x
c x y

by y
c x y

α

β

+

+

= − +
+ − −⎡ ⎤⎣ ⎦

= − +
+ − −⎡ ⎤⎣ ⎦

 (40) 

The constants α  and β  which 0 , 1α β< <  are the time rates 
at which the sales of both firms decay in absence of 
investments while the second terms in the right hand side of 
Eq.(40) describes the investment effect at the k-th time period 
on the sale quantities at (k-1)-th time period. Parameters a and 
b define the investment effectiveness of the firms and c is an 
“elasticity” measure of the investment strategies. The regular or 
irregular behavior of dynamic system described by Eq. (40) 
depends on the values of parameters ,α β , a, b and c. 
For 0.46 , 0.7 , 0.16 , 0.9 , 105a b cα β= = = = = , system 
(40) shows chaotic. The first order fixed points of the system is 

1 10.01182 , 0.04370f fx y= = . 
For chaos elimination from the system, the first order fixed 

point of the system is selected to be stabilized, and both firms 
achieve this objective by applying the control action to the 
parameters a and b, i.e. the investment effectiveness. In this 
case the controlled system is written as: 

( )

( )

1

1

(1 )
1 exp

(1 )
1 exp

k
k k

k k

k
k k

k k

a u
x x

c x y

b v
y y

c x y

α

β

+

+

+
= − +

+ − −⎡ ⎤⎣ ⎦
+

= − +
+ − −⎡ ⎤⎣ ⎦

 (41) 

Comparing Eq. (41) and Eq. (1) yields 
( ) ( )
( ) ( )

1 1, 1,

1 2, 2,

, ,

, ,
k k k k k k k k

k k k k k k k k

x f x y g x y u

y f x y g x y v
+

+

= +

= +
 (42) 

where 
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( )
( )

( )
( )

( ) ( )
( )

1,

2,

1, 2,

, (1 )
1 exp

, (1 )
1 exp

1, ,
1 exp

k k k k
k k

k k k k
k k

k k k k k k
k k

af x y x
c x y

bf x y y
c x y

g x y g x y
c x y

α

β

= − +
+ − −⎡ ⎤⎣ ⎦

= − +
+ − −⎡ ⎤⎣ ⎦

= =
+ − −⎡ ⎤⎣ ⎦

 
(43) 

It is assumed that all of the state variables can be measured and 
fed back. Due to market uncertainties the system parameters are 
not known while their nominal or estimated values are assumed 
to be known which are denoted by ˆˆˆ ˆ ˆ, , , ,a b cα β . The upper 
limits of the errors between the actual and nominal values of 
parameters are assumed to be specified and denoted by , ,α βε ε  

, ,a b cε ε ε , as in 
ˆˆ ˆ, ,

ˆˆ ,

c

a b

c c

a a b b

α βα α ε β β ε ε

ε ε

− < − < − <

− < − <
 (44) 

Two sliding surfaces are considered for designing the 
control actions, 

1 1, 1 1, 1 1, 1 1
1, 1

2 2, 1 2, 1 2, 1 1
2, 1

1ˆ 1

1ˆ 1

k k k k k
k

k k k k k
k

S e e g u
c

S e e g v
c

α

α

− − −
−

− − −
−

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + −⎜ ⎟⎜ ⎟
⎝ ⎠

 (45) 

where 
1, 1

2, 1

k k k

k k k

e x x
e y y

−

−

= −

= −
 (46) 

and 1α  is selected such that 1 1α <  . Regarding Eq. (21) 
the control inputs, ku and kv  are calculated as: 

1, 1,
1, 1 1, 1

1,

2, 2,
2, 1 2, 2

2,

ˆ sat
ˆ

ˆ sat
ˆ

k k
k k k k

k

k k
k k k k

k

c S
u f x e

g

c S
v f y e

g

α ε
φ

α ε
φ

− ⎛ ⎞⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− ⎛ ⎞⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (47) 

where φ is the boundary thickness and regarding Eq. (22) 

1, 2 1 1 1,
1, 1

1,

2, 2 2 1 2,
2, 1

2,

1

1

k k k
k

k

k k k
k

k

c u if S
c

if S

c v if S
c

if S

γ δ

δ

γ δ

δ

− −
−

− −
−

⎧ − <⎪= ⎨
>⎪⎩

⎧ − <⎪= ⎨
>⎪⎩

 (48) 

 and , 1,2j jε =  are obtained according to Eq. (11) as 

j jHε η= where: 

1, 1, 1, 1,
ˆ ˆ , , 1,2j k k k k jH f f g g U k j> − + − ∀ =  (49) 

where jU is the upper bound for control signals. jH can be 
calculated with some cumbersome calculations like the ones 
performed in [23] . 

Numerical simulation for α  = 0.46 , β  = 0.7 , a = 0.16 ,  

b = 0.9 , c = 105 , ˆˆˆ ˆ0.45, 0.71, 0.17 , 0.9,a bα β= = = =  
ˆ 105.5c = , αε  = 0.01 , βε  = 0.01 , aε  = 0.01 , bε  = 0.01 and

1cε =  is shown in Figure 2 and Figure 3. The control 
parameters are set as 1α  = 0.1, 1 2 0.2 , 0.01γ γ δ= = = and 

0.2iU =  . It is observed that the fixed point of the system is 
asymptotically stabilized, even although that no where abouts 
of the fixed point is provided for the controller. 

 
Figure 2-Time series state and control signal in the Behrens-

Feichtinger model (controller starts at step 20) 

 
It is also remarkable that the proposed Delayed Feedback 

Quasi Sliding Mode Controller is more sensitive to 
uncertainties, and might take a longer time to stabilize such 
systems regarding the normal quasi sliding mode [23], but as 
the fixed point of uncertain systems aren’t exactly known, 
despite normal quasi sliding mode, this scheme can achieve the 
zero controlling signal that is desired in the control of chaos. 

 
Figure 3-Time series of distance from variable sliding surface in the 

Behrens-Feichtinger model (controller starts at step 20) 

 
CONCLUSION 

In this paper the problem of chaos control in uncertain 
economic models is investigated. To this purpose the delayed 
feedback quasi-sliding mode controller is designed and utilized 
for stabilization of unstable fixed points of economic system. 
The performance is examined by applying it to two chaotic 
models, the Behrens-Feichtinger and the Cournot duopoly 
model with complements. Simulation results illustrate that the 
presented algorithm may be successfully applied to chaotic 
economic models to obtain regular and stable behaviors. It also 
mentioned that considering normal sliding mode controller, the 
suggested method is less resilient to uncertainties, but can reach 
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the zero control signal and stabilize the real fixed point of 
system.  
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