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Abstract
The well known Foucault pendulum is studied within

the formalism of sub-Riemannian geometry on step-
2 nilpotent Lie groups. It is shown that in a rotating
frame a sub-Riemannian structure can be naturally in-
troduced. Some other physical models such as a falling
particle on a rotating planet can be treated in a similar
form. Horizontal trajectories are explicitly computed
and displayed for the symmetric case.
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1 Introduction
In 1851, the french physicist J.B.L. Foucault sus-

pended a 67 meters, 28 kilograms pendulum from the
dome of the Pantheon in Paris, and made the obser-
vation that the pendulum’s oscillation plane rotated
slowly clockwise with respect to the Earth. Since
then the experiment has been recognized as a feasible
demonstration of the rotation movement of Earth, and
has been extensively studied.
In this paper we approach this classical problem as

a problem in sub-Riemannian geometry, this approach
unveils interesting geometric properties for the trajec-
tories and leads in a natural way to some other physical
models such as the classical analog of electrons in cer-
tain nanostructures, the so called quantum dots.
Generally speaking, sub-Riemannian geometry is the

geometry of non-holonomic constraints, see for in-
stance [Vershik, 1991] and [Montgomery, 2002]. This
viewpoint is based on the fact that in some dynamical
systems, the non-holonomic constraints are encoded by
means of a Pfaffian system, that is, a linearly indepen-
dent set of differential 1-forms representing part of the
kinematics. If the smooth vector fields that generate the
kernel of the Pfaffian system satisfy a generic condi-
tion, (the so-called Hörmander condition), then the dis-
tribution of vector fields is called non-holonomic and

a Riemannian metric, restricted to the distribution, can
be defined and naturally associated to the kinetic en-
ergy of the system.
Such a formalism has been used for tackling prob-

lems in physics and geometric optimal control the-
ory, see for instance [Brockett, 1993] and [Jurdjevic,
1997]. For dynamical systems described in terms of
non-holonomic distributions of vector fields, the struc-
ture of the spanned Lie algebra, that is, the Lie algebra
obtained by Lie bracketing iteratively the vector fields,
determines most of the relevant properties of the sys-
tem. Non-holonomic distributions are in the opposite
side of integrable ones, they provide the main object
of study of what is known as Carnot-Caratheodory or
sub-Riemannian geometries, see for instance [Mont-
gomery, 2002].
On a connected, simply connected n-dimensional

smooth manifold M, a rank-m distribution ∆, with
m < n, consists of a smooth rank-m sub bundle of the
tangent bundle TM. The iteration of the Lie bracket of
vector fields in ∆ yields the following flag of modules
of vector fields

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆l · · · ⊂ T M

where ∆1 = ∆ and ∆i+1 = ∆i + [∆,∆i]. The dis-
tribution is said to be non-holonomic or bracket gener-
ating, if for each q ∈ M, there exist a positive integer
i for which ∆i

q = Tq M. The first i for which this
occurs is called the degree of non-holonomy of ∆ at q.
Let nj = nj(q) = dim(∆j

q), the growth vector of ∆
at q is defined as (n1, . . . , ni)q , the distribution is said
to be regular if the growth vector is independent of the
base point. An absolutely continuous curve t 7→ q(t),
is said to be horizontal, if q̇(t) ∈ ∆(q(t)), almost ev-
erywhere. The Chow-Rashevski’s theorem guarantees
that for regular non-holonomic distributions, any two
points in M, can be connected by an horizontal curve,
see for instance [Montgomery, 2002]. For regular non-



holonomic distributions, a sub-Riemannian metric is
defined by a smooth varying inner product q 7→ 〈·, ·〉q
on the hyperplanes ∆q .
In the case we are interested on, the distribution is

given as ∆ = {X1, . . . , Xm}, and horizontal curves
are solutions of the following affine in the controls con-
trol system

q̇ =
m∑
i=1

ui Xi(q), (1)

where the control parameters are measurable and rep-
resented by state velocities, ui = q̇i.
The sub-Riemannian structure is given by a smooth
varying inner product 〈·, ·〉q defined on the planes
∆q = span{X1(q), . . . , Xm(q)}, by declaring the vec-
tor fields as orthonormal, that is, 〈Xi, Xj〉 = δij . This
structure is naturally associated to the variational prob-
lem of the minimization, in the class H of horizontal
curves q : [0, Tq]→ M, of the functional

S =
∫ Tq

0

(T − V ) dt, (2)

were, T is the kinetic energy and V is the potential
energy. The geodesic sub-Riemannian problem can
then be approached as the optimal control problem with
plant (1) and cost (2).
Apart from this introduction this paper contains four

sections, in sections 2 and 3, we derive the dynamic
equations for the Foucault pendulum and set the prob-
lem as a geodesic sub-Riemannian problem in a step-2
nilpotent Lie group. In section 4, we write explicitly
the underlying structure for small oscillations. In sec-
tion 5 we calculate explicitly integral curves and derive
some geometric properties. At the end, in section 6 we
derive some conclusions and discuss further research
perspectives.

2 Foucault pendulum within the Sub-Riemannian
framework.

We consider a pendulum of length ` and point mass
m oscillating on the Earth surface, taking into account
only the rotation movement. An inertial coordinate sys-
tem (X,Y, Z) is considered, in such a way that Earth’s
rotation axis coincides with the Z direction. Let ~ω be
the angular velocity of the rotational motion, and let
(x, y, z) be the position of the mass measured from a
fixed coordinate system with origin located at latitude
α on Earth’s surface measured from equator, the x di-
rection is taken on a meridian in north-south sense, the
y direction on a parallel circle in west-east sense, and
the z direction perpendicular to the tangent plane at the
intersection of both circles, see figure 1. By taking the

origin at the suspension point of the pendulum, the di-
rection cosines are given as cosφx = x

` , cosφy =
y
` and cosφz = − z` .
For a mass m in a gravitational force field ~FG =
−~∇VG, the trajectories are determined by minimizing
the functional

S0 =
∫ (

m

2

∣∣∣∣d~rdt
∣∣∣∣2 − VG)dt,

subject to the constraints. In our case a vector ~r in the
non-inertial system on Earth’s surface behaves as

d~r

dt
= ~̇r + ~ω × ~r,

where ~̇r = (ẋ, ẏ, ż) and ~ω = (−ω cos(α), 0, ω sin(α)),
with ω ≈ 2π/24hr ≈ 10−4 sec−1. Observe that this is
a very small angular velocity, compared with the usual
pendulum speed of the order of tenths of sec−1.
The kinetic energy is given as follows

m

2

∣∣∣∣d~rdt
∣∣∣∣2 =

m

2
(|~̇r|2 + |~ω × ~r|2 + 2~̇r · (~ω × ~r) ).

The second term leads to a centrifugal force perpendic-
ular to the rotation axis, but together with the central
gravitational potential, yields a vertical force of mag-
nitude mg, perpendicular to the tangent plane to the
planet surface. Thus, we set

−VG +
m

2
|~ω × ~r|2 = −mgz.

For the third term, we have the identity

~̇r · (~ω × ~r) = ~ω · (~r × ~̇r)
= ωx(yż − zẏ) + ωy(zẋ− xż) + ωz(xẏ − yẋ).

Figure 1. The Pendulum at a latitude α



Finally we add the following holonomic constraint

x2 + y2 + z2 − `2 = 0. (3)

In consequence the complete functional is written as
follows

S =
∫ (

(
m

2
(ẋ2 + ẏ2 + ż2 − 2gz) + λ0r

2

+ λ1(ξ̇ + yż − zẏ) + λ2(η̇ + zẋ− xż)

+ λ3(ζ̇ + xẏ − yẋ)
)
dt.

where the Lagrange parameter λ0 has been introduced,
set λ1 = −mω cosα, λ2 = 0 and λ3 = mω sinα
and the differentials ξ̇dt, η̇dt and ζ̇dt. The last differ-
entials do not alter the Euler-Lagrange equations for ~r,
but are essential for the sub-Riemannian approach. The
parameters λi can be seen as the Lagrange parameters
associated with the following 1-forms

w1 = dξ + ydz − zdy,
w2 = dη + zdx− xdz,
w3 = dζ + xdy − ydx.

Consider now the six-dimensional manifold M with
local coordinates q = (x, y, z, ξ, η, ζ). Associated
to the Pfaffian system {w1, w2, w3} ⊂ T∗M, we
have the distribution of smooth vector fields ∆ =
{X1, X2, X3} ⊂ TM, where

X1 =
∂

∂x
+ y

∂

∂ζ
− z ∂

∂η
,

X2 =
∂

∂y
+ z

∂

∂ξ
− x ∂

∂ζ
,

X3 =
∂

∂z
+ x

∂

∂η
− y ∂

∂ξ
.

The vector fields Xi are dual to the 1-forms wi and
generate a six dimensional step-2 nilpotent Lie algebra
g with non-zero brackets [Xi, Xj ] = Xij , i < j, and

X12 = −2
∂

∂ζ
, X13 = 2

∂

∂η
, X23 = −2

∂

∂ξ
.

Since TqM is six dimensional for all q ∈ M, the dis-
tribution ∆ is bracket generating. A sub-Riemannian
structure for this problem is given by the pair formed
by the distribution ∆ and the Euclidean metric given
by the kinetic energy, horizontal curves satisfy

q̇ = ẋX1(q) + ẏX2(q) + żX3(q), (4)

and horizontal energy minimizers corresponds to ex-
tremals of the functional S.

3 Equations of Motion
The Euler-Lagrange equations are the following

mẍ+
d

dt
(λ2z − λ3y) = 2λ0x− λ2ż + λ3ẏ,

mÿ +
d

dt
(λ3x− λ1z) = 2λ0y − λ3ẋ+ λ1ż,

mz̈ +
d

dt
(λ1y − λ2x) = 2λ0z − λ1ẏ + λ2ẋ−mg,

and λ̇1 = 0, λ̇2 = 0, λ̇3 = 0. The parameters λ1,
λ2 and λ3 are therefore constants and the extremals are
solutions of the following system

mẍ = 2λ3ẏ − 2λ2ż + 2λ0x, (5)
mÿ = −2λ3ẋ+ 2λ1ż + 2λ0y, (6)
mz̈ = 2λ2ẋ− 2λ1ẏ + 2λ0z −mg, (7)

which together with the relations

ξ̇ = zẏ − yż, (8)
η̇ = xż − zẋ, (9)
ζ̇ = yẋ− xẏ, (10)

yield the equations of motion in R6.
As we noted above, the coordinates can be selected in
such a way that the y component of the angular velocity
is zero, i.e. λ2 = 0. For a falling particle, λ0 = 0,
but for the Foucault pendulum a further approximation
shall be needed to integrate the equations of motion.
The equations of motion in base space (x, y, z) are

gauge invariant. Adding an exact differential dφ to w
leads to the same equations and to the same Lie alge-
bra for the vector fields. Singular trajectories are those
curves that satisfy the constraints, as when we solve the
equations which result taking m = 0 in the functional.

4 Small Oscillations
For small oscillations we take z = −` to first order,

so that from condition (3), x and y are much smaller,
furthermore, equation (7) yields 2λ0 = −mg/`. We
neglect finally the terms containing ż with respect to
those having ẋ and ẏ, since the height variation is much



smaller than the variation of the position in the horizon-
tal plane.
Since the equations for ξ and η are integrable, we get

that the final system is defined on R3 and is written as
follows

ẍ = 2ω̃ẏ − ω2
0x, (11)

ÿ = −2ω̃ẋ− ω2
0y, (12)

ζ̇ = −xẏ + yẋ, (13)

with the frequencies ω0 =
√
g/` and ω̃ = λ3/m.

These equations follow also from the

L0 =
m

2
(ẋ2 + ẏ2)−mg

2`
(x2 +y2)+2λ3(ζ̇+xẏ−yẋ).

From this Lagrangian, and the 1-form associated to
equation ( 13), we can define for this restricted problem
a sub-Riemannian structure given by the two dimen-
sional Euclidean metric and the rank two distribution
generating the standard Heisenberg algebra.

4.1 The canonical momenta and the Hamiltonian
As customary we consider the canonical momenta

px =
∂L0

∂ẋ
, py =

∂L0

∂ẏ
, pζ =

∂L0

∂ζ̇
.

It follows that

px = mẋ− 2λ3y,

py = mẏ + 2λ3x,

pζ = 2λ3

and consequently the adjoint system is written as fol-
lows

ṗx = −mω2
0x,

ṗy = −mω2
0y,

ṗζ = 0.

We conclude that ṗ is constant along extremals, and
furthermore, the first two equations of motion imply

d

dt

1
2

(ẋ2 + ẏ2 + ω2
0x

2 + ω2
0y

2) = 0

in consequence, the Hamiltonian is a constant of mo-
tion given as follows

H =
1

2m
(px+pζy)2+

1
2m

(py−pzx)2+
m

2
(x2+y2)ω2

0 .

4.2 Related problems
The particular case g/` = 0 coincide with the so-

called Heisenberg fly-wheel, see [Montgomery, 2002],
but in general this problem is rather a point particle in
a two dimensional harmonic oscillator potential with
elastic constant equal to mg/`, coupled to a fly-wheel
or crank. This problem is also related to a two di-
mensional analog of a classical (symmetric) cranking
model for a nucleon in a rotating atomic nucleus. Note
that the quantitym(x2 +y2) in the Hamiltonian has the
physical units of a moment of inertia.
A further important physical model is that of an elec-

tron, with charge −e, in a two dimensional harmonic
potential in a perpendicular constant magnetic field B.
The electromagnetic vector potential ~A would be given
by eB ~A/2c = (λ3y,−2λ3x, 0), corresponding to the
symmetric gauge. The quantum problem is a quantum
dot, which is a relevant topic in the physics of nanos-
tructures.

5 Horizontal trajectories
In order to integrate the equations of motion, we con-

sider the complex variable u = x + iy, which implies
ζ̇ = Im (uu̇∗) and

ü = −i2λ3

m
u̇− g

`
u.

By writing u ∝ eiα±t we obtain the eigenvalues

α± = −ω̃ ± ω̃0,

with frequencies ω̃0 =
√
ω̃2 + ω2

0 , ω0 =
√
g/` and

ω̃ = λ3/m. Here, ω̃ is equal to the rotation angular
speed ω times the sinus of the geographical latitude.
The general solution of the differential equation is the

linear combination u = A+e
iα+t + A−e

iα−t, from
where we obtain

u = e−iω̃ t(A+e
iω̃0 t +A−e

−iω̃0 t),
u̇ = i e−iω̃ t(α+A+e

iω̃0 t + α−A−e
−iω̃0 t),

ζ = −(α+|A+|2 + α−|A−|2) t
−2Re

(
A+A

∗
− (e2i ω̃0 t − 1)

)
.

The first two relations yield a rotation given by the
slow mode, with frequency ω̃, of the fast mode motion,
with frequency ω̃0. Therefore, the trajectory in base



space performs a precession with frequency ω sinα,
whereas ζ increases by the same amount after 2π/ω̃0

seconds.
A curve in base space is closed only when the fre-

quencies ω̃ and ω̃0 are congruent modulo 2π, and this
occurs only if ω̃ = $n and ω0 = $m, where n and
m are integer such that the sum of their squares is also
the square of an integer, say n2 + m2 = k2, so that
ω̃0 = k$. Set for example n = a2 − b2, m = 2ab for
a > b integers, then k = a2 + b2. Of course, from the
experimental point of view, this may be irrelevant since
for the Earth the frequency ω̃ is much smaller than ω0.
Loops of piecewise continuous horizontal curves allow
to define the holonomy group, which in our case is
given by translations along the fiber over (x, y). For the
just given congruent frequencies, the trajectories close
after a time T = 2π/ω̃.
From the equation for u, the conservation of energy

is written now as 2H/m = |u̇|2 + ω2
0 |u|2. We can

compute explicitly the products to get

|u|2 = |A+|2 + |A−|2 + 2 Re(A+A
∗
− e

2iω̃0t),

|u̇|2 = α2
+|A+|2 + α2

−|A−|2 − 2ω2
0 Re(A+A

∗
− e

2iω̃0t),
2
m
H = α2

+|A+|2 + α2
−|A−|2 + ω2

0(|A+|2 + |A−|2).

The initial conditions shall fix the remaining constants
for u, and in the trajectories in base space can be writ-
ten explicitly. In the following three paragraphs we an-
alyze different settings for the pendulum

5.1 Starting from rest with initial conditions on a
circle

This corresponds to the original Foucault experimen-
tal setting, it consists of an initial position along a circle
of radius R, thus x(0) = R cosβ, y(0) = R sinβ, for
β ∈ (0, 2π), and the mass starting from rest, that is,
ẋ(0) = 0 and ẏ(0) = 0.
We haveA+ +A− = Reiβ andA+α+ +A−α− = 0,

so that,

A± =
Reiβ

2

(
1± ω̃

ω̃0

)
,

furthermore,

α2
+|A+|2 + α2

−|A−|2 =
R2ω4

0

2(ω̃2 + ω2
0)
,

A+A
∗
− =

R2ω2
0

4(ω̃2 + ω2
0)
.

In conclusion the trajectory is given as follows

x = R cos(ω̃t− β) cos ω̃0t+
Rω̃

ω̃0
sin(ω̃t− β) sin ω̃0t,

y = −R sin(ω̃t− β) cos ω̃0t+
Rω̃

ω̃0
cos(ω̃t− β) sin ω̃0t,

ζ =
R2ω̃ω2

0

ω̃2
0

(
t

2
− sin 2ω̃0t

4ω̃0

)
.

The expressions for x and y yield a rotation by an an-
gle α = ω̃t− β of the ellipse given by the vector

(R cos ω̃0 t,
Rω̃

ω̃0
sin ω̃0 t).

This vector has initial value (R, 0) and takes the same
value at times tk = π k/ω̃0, for k integer. Since
ω̃ < ω̃0, the nearest approach to the origin is at distance
Rω̃/ω̃0. The curves in base space are hypocycloids.
A single to and fro motion occurs after a time 2π/ω̃0

and the difference between the angles α corresponding
to these two points is therefore

∆α =
2πω̃
ω̃0

.

This is the phase acquired after a complete oscillation
and the horizontal trajectory is lifted above the base
space by

∆ζ =
R2 π ω̃ ω2

0

ω̃3
0

.

The trajectory never reaches the origin and is tangent
to a cylinder of radius Rω̃/ω̃0 at times τj = (2j +
1)π/2ω̃0, for j = 0, 1, . . . For general ω̃ and ω0 the
trajectory in base space never closes, except for certain
rational values of their quotients.

5.2 Starting in the origin with non zero velocity
We consider now the case x(0) = y(0) = 0, together

with ẋ(0) = v0 cosβ and ẏ(0) = v0 sinβ. In this case
we have u(0) = 0 and u̇(0) = v0e

iβ which lead to
A+ + A− = 0 and A+α+ + A−α− = −i v0eiβ , from
where we obtain

A± = a±(sinβ − i cosβ), with a± = ± v0
2ω̃0

,

furthermore

α2
+|A+|2 + α2

−|A−|2 =
(2ω̃2 + ω2

0)v2
0

2(ω̃2 + ω2
0)

,

A+A
∗
− = − v2

0

4(ω̃2 + ω2
0)
.



In consequence the trajectory in total space is written
as follows

x = v0 cos(β − ω̃t) sin ω̃0 t

ω̃0
,

y = −v0 sin(β − ω̃t) sin ω̃0 t

ω̃0
,

ζ =
v2
0ω̃

ω̃2
0

(
t

2
− sin 2ω̃0 t

4ω̃0

)
.

The trajectories in base space are rhodonea or roulette
curves which always close at the origin.

5.3 Starting from an arbitrary point with a given
velocity.

Without loss of generality we can assume that x(0) =
x0, y(0) = 0, and ẋ(0) = v0 cosβ and ẏ(0) =
v0 sinβ. In this case we have u(0) = 1 and u̇(0) =
v0e

iβ , from where we get

A+ +A− = x0,

A+α+ +A−α− = −i v0eiβ

2ω̃0A± = ∓α∓x0 ∓ v0e
iβ+iπ/2.

We obtain first,

4ω̃2
0 |A+|2 = α2

−x
2
0 + v2

0 + 2α−x0 v0 cos(β + π/2),
4ω̃2

0 |A−|2 = α2
+x

2
0 + v2

0 + 2α+x0 v0 cos(β + π/2),

and then, 4ω̃2
0Re(A+A

∗
−) = −α−α+x

2
0 +

4ω̃x0 v0 cos(β + π/2) − v2
0 , and 4ω̃2

0Im(A+A
∗
−) =

−4ω̃0x0 v0 sin(β + π/2). In these relations we
have α+α− = −ω2

0 , α+ + α− = 2ω̃0 and
α2
− + α2

+ = 4ω̃2 + 2ω2
0 . In consequence, trajec-

tories in total space are written as follows

x =
1

2ω̃0
(−α−x0 cosα+t+ α+x0 cosα−t

+ (v0 sin(α+t+ β)− v0 sin(α−t+ β)),

y =
1

2ω̃0
(−α−x0 sinα+t+ α+x0 sinα−t

− (v0 cos(α+t+ β)− v0 cos(α−t+ β)),

ζ = −a0t−
a1

2ω2
0

(cos 2ω̃0t− 1) +
a2

2ω2
0

sin 2ω̃0t,

where a0, a1 and a2 are the following constants

a0 = α2
+|A+|2 + α2

−|A−|2,
a1 = −2ω2

0Re(A+A
∗
−),

a2 = +2ω2
0Im(A+A

∗
−).

The curves in base space correspond to hypotrochöids,
respectively epitrochöids, which are curves generated
by rolling without slipping, one circle over another cir-
cle.

6 Conclusions and perspectives
We study the classical Foucault’s pendulum under

the framework of sub-Riemannian geometry. This ap-
proach allows to set a differential system for horizontal
curves that can be explicitly integrated. This formal-
ism leads also to some other physical models. The cal-
culation of sub-Riemannian spheres and the associated
wave fronts, as well as the general non-symmetric Fou-
cault’s pendulum are part of our current research and
shall be reported elsewhere.
The problem under discussion, although classic, and

in some sense standard textbook material, provides un-
der the sub-Riemannian approach, an interesting source
of new theoretical and applied problems. For instance,
it shall be interesting to establish a connection between
the different curves obtained and the other physical
models, such as two-level systems, quantum comput-
ing. Recently has been reported some interesting ap-
plications of the Foucault-like problems satellite for-
mation lying, satellite constellation and space terminal
rendezvous, we refer the reader to [Condurache, 2008].
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