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The problem of controlling chaos usually means stabilization of unstable periodic orbits 
of a dynamical system by simple controlling impacts [1]. Using controlling chaos techniques al-
lows to reach steady periodic behavior at that parameters where without control the dynamics is 
chaotic. Among the methods of chaos control the most popular is the time-delayed autosynchro-
nization suggested by Pyragas [2] when an additional feedback path (FP) is applied with delay 
time approximately equal to the period of motion to be stabilized. In the paper [3] this method 
has been extended on a case of stabilization of unstable fixed points near the Hopf bifurcation 
threshold. In this case delay time should be close to the period of unstable perturbations. In this 
work, we develop a generalization of the Pyragas method for distributed systems which itself 
possess time-delayed terms. The proposed method is based on introduction of an additional 
feedback loop with parameters chosen so that the fundamental frequency components after pass-
ing through different FP appear in phase, while the most unstable sidebands appear in antiphase, 
thus suppressing each other. As an example we consider the well-known Ikeda system [4] that is 
a ring-loop resonator partly filled with a nonlinear dispersive media and forced with an external 
harmonic signal. Fig. 1 shows the schematics of the Ikeda system (a) and its modification with 
an additional FP (b). 
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Fig. 1. Schematics of a ring-loop resonator partly filled with a nonlinear dispersive media (a) and 
its modification with an additional feedback serving for chaos control. 1,2T  are delay times, ρ  
and 1ρ  are amounts of feedback, Φ  is a phase shifter required to adjust the phase difference of 
the two signals passing through different loops. 
 

Suppose that the nearly single-frequency plane wave propagates in the in the nonlinear 
dispersive medium. In that case one can write down the nonlinear Schrödinger equation (NSE) 
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describing the slowly varying complex amplitude of the wave, ( ),A x t  [5]. Here gV  is the group 
velocity, 0′′ω  is the group velocity dispersion parameter, β  is the nonlinearity parameter. Taking 
into account the external forcing and two delayed feedback loops we obtain the following de-
layed boundary condition 
 ( ) ( ) ( ) ( )1 2
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where 1,2ψ  and 1,2T  are phase shifts and delay times of the two FPs respectively, l  is the length 
of the nonlinear medium. Nonlinear dynamics of this system with only one feedback loop 



( 1 0ρ = , see Fig. 1(a)) has been investigated in detail in [6]. It has been shown, that there are two 
basic types of behavior. In case of weak dispersion increasing of either input power or amount of 
feedback leads to the Ikeda instability followed by period doubling transition to chaos. This pic-
ture is quite similar to the widely investigated Ikeda system [4,7]. When the dispersion is strong 
the instability of a single-frequency regime is caused by the modulation instability, and quasipe-
riodic route to chaos is usually observed. 

First we examine a simplified model in the case of zero dispersion ( 0 0′′ω = ) when the 
equations (1) and (2) could be reduced to the discrete map 
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+ −= + ρ + ρ −ρ , (3) 
where nA  — complex amplitude of a signal at n-th moment of discrete time, 1,2 gl Vϕ = ψ + ω  is 
a total phase shift of the signal passing around the resonator. Here we suppose that 1 2ψ = ψ  and 

2 12T T= . When 1 0ρ =  (3) becomes the classical Ikeda map which is well investigated [4,7].  
 We analyze theoretically the stability of fixed points for the map (3) and find that thresh-
old of the Ikeda instability grows with 1ρ  and tends to infinity when 1 0.5r ≡ ρ ρ = . Thus appli-
cation of the second FP leads to stabilization of the steady-state regime. However, at 1 3r >  a 
domain of quasiperiodic motion appears restricting the capability of control. The theoretical re-
sults are in good agreement with numerical calculations. Fig. 2 presents the bifurcation maps on 

,inA ϕ  plane for 0.5ρ =  without (a) and with (b) the control. Theoretical lines of tangent, period-
doubling and Neimark-Sacker bifurcations are shown in Fig. 2 with dashed, solid and dotted 
curves respectively. One can see that the domain of stability of the steady-state regime enlarges 
with the increase of control feedback. The domain of stability is maximal at 1 3r = .  
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Fig. 2. Bifurcation maps for the modified Ikeda map (3) for 0r = , i.e. there is no control feed-
back (a) and for 0.36r =  (b). Theoretical lines of a tangent bifurcation (dashed), period-doubling 
bifurcation (solid) and Neimark-Sacker bifurcation (dotted) are plotted above the bifurcation 
maps. Numbers on the maps mark the corresponding periods. Domains of quasiperiodic and cha-
otic motion are colored in white. 

 



Second, we consider the dynamics of the distributed system (1), (2) when the dispersion 
should be taken into account. Analysis shows that suppression of instability is provided with the 
following choice of control parameters: 
 ( )1 2 1 22 n T Tψ = π +ψ + ω − , 

 ( )1 2 2T T mΩ − = π + π , 
where Ω  is the self-modulation frequency which can be obtained from the results of numerical 
simulations [6]. Numerical modeling show that proper selection of delay times 1,2T  and phases 

1,2ψ  provide stable periodic motion even at those parameters for which the behavior of the sys-

tem without control is chaotic. In Fig. 3 waveforms of output signal intensities ( )I A l=  are 
presented confirming that adding of the control loop with rather small amount of feedback com-
pletely suppresses chaos and results in single-frequency operation with constant amplitude. 
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Fig. 3. Output signal waveforms of for the system (1), (2) at 0.5ρ = , 1β = , 2V = , 0 1.0′′ω =  

2 9T = , 0ω = , 0.5inA =  and 1 0ρ =  (a) and 1 0.2ρ =  (b). 
 
 In this work we proposed the modification of time-delayed controlling chaos technique 
for suppress of self-modulation instability in delayed-feedback distributed systems. Efficiency of 
the method was demonstrated for the example of a ring-loop resonator partly filled with a 
nonlinear dispersive media. It was shown that application of the additional external feedback 
with properly chosen delay and phase shift can stabilize steady-state single-frequency oscilla-
tions even when the dynamics of the system without control is chaotic. 
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