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Abstract   

Nonlinear dynamical systems possess some 
properties which at the first sight look unexpected and 
even surprising (see, e.g., [1,2]). In this paper a collec-
tion of new qualitative results relating to stability of 
such systems is presented. In particular, for periodic 
oscillations of systems with non-monotonic elastic 
forces, new stability and instability effects are found. 
For some systems with uncertain bounded terms, nec-
essary and sufficient stability conditions are obtained; 
the surprising feature is that they are independent upon 
arbitrary time-varying delays in the uncertain terms. It 
is shown that the known mathematical model of a 
swing – a pendulum with a periodic length – is incor-
rect. An unknown feature relating to regions of para-
metrical resonances is found.  
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1 Systems with non-monotonic elastic forces 
Forced and parametric oscillations of a system with 

one degree of freedom are usually described by the 
equation  

tpxfxx ωµ sin)( =++ &&&               (1) 
and  

      0)()sin1( =+++ xftpxx ωµ&&& ,          (2) 
respectively. 
 

                a)                                     b)   
 
 
 
 
 
 

Figure 1 
 
We assume that the value µ  is small and the elas-

tic characteristic )(xf  is non-monotonic and softening 
(Figure 1,a) or hardening (Figure 1,b). In Figure 2 
some mechanical models with such characteristics are 
presented.  

 

 
               a)                                   b)   

Figure 2 
 
The universally adopted notions on the behavior of 

amplitude-frequency characteristics )(ωiA  of hamonic 
oscillations 2,1),( =itxi  in systems (1), (2) and their 
stability are mainly based on an analysis of specific 
models via numerical and approximate analytical 
methods. A qualitative analysis of such systems en-
abled us to obtain rigorous general results and find out 
some unknown features.  

If a periodic solution )(tx  of equation (1) or (2) 
with 0=µ  is stable (unstable), then for small µ , the 
corresponding solution ),( µtx  is asymptotically stable 
(unstable). So, in what follows we assume 0=µ .  

 
                     a)                             b) 

 
Figure 3 

 
It can be shown that the amplitude-frequency char-

acteristics 2,1),( =iAi ω  in systems with non-
monotonic elastic forces are qualitatively the same as 
that in the case of monotonic )(xf  (Figure 3). How-
ever, some new features relating to stability of the fam-
ily ),(1 ωtx  are found.  

Consider first forced oscillations. As is known, in 
the case of monotonic )(xf , the solutions ),(1 ωtx  in a 
system with softening nonlinearity are stable for all ω . 
If )(xf  is non-monotonic, a break of stability occurs 
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as the amplitude 1A  increases (the dotted line in Figure 
3,a). It should be emphasized that the instability begins 
with an amplitude cA <*

1  (in particular, for a pendu-

lum, π<*
1A ). So, the above effect may exist in a sys-

tem which has no unstable equilibrium positions. 
Moreover, it can be shown that for any system with 
softening non-monotonic characteristic, an exciting 
force )( tp ω can be found such that the periodic oscilla-
tions )(1 ωA  are unstable for some ω .   

In a system with monotonic hardening nonlinearity 
the solutions ),(1 ωtx , corresponding to the lower 
branch of )(1 ωA , are stable for all ω . It is found [3] 
that in the non-monotonic case, )(1 ωA  is stable for 
some ),( 21 ωωω ∈  and unstable for ),( 2 ∞∈ ωω (Fig-
ure 3,b). Note that the value cA <)( 21 ω ; it follows that 
stable oscillations exist even when a system has no 
stable equilibrium positions, i.e., the elastic force is 
completely repulsive.   

In particular, oscillations of a pendulum about the 
upper equilibrium point are unstable for small ampli-
tudes. As the amplitude increases (due to either a de-
crease in oscillation frequency or an increase in the 
exciting force), the oscillations become stable begin-
ning with some ),2/(*

1 ππ∈A . Thus, stable oscilla-
tions proceed at a completely repulsive part of the elas-
tic force.   

 

 
                                    Figure 4 

 
The amplitude-frequency characteristics )(ωiA , 

2,1=i  of main ( ωπ /4=T ) parametric oscillations in 
systems with softening nonlinearity are shown in Fig-
ure 4. Analogously to the case of forced oscillations, 
for non-monotonic )(xf , the solutions )(1 tx  with the 

amplitudes ),( *
11 cAA ∈  are unstable (while for mono-

tonic )(xf , the branch )(1 ωA  is stable for all ω ).  
Note that, to our knowledge, the presence of insta-

bility interval on the branch )(1 ωA  (Figures 3,a and 4) 
is  not known so far (though such systems, especially a 
pendulum, were widely treated in the literature). The 
matter is that stability is usually analyzed via perturba-
tion methods with p  being a small parameter (quasi-
conservative approach). For sufficiently small p , any 
solution ),(1 ptx  is stable (precisely this fact is estab-
lished by perturbation methods). However, the stability 
breaks for some )(* ωpp = ; it can be shown that 

0)(* →ωp  as 0→ω . So, for a fixed p , there always 
is an interval ),0( *ω  for which the solutions ),(1 ptx  
are unstable. 

Therefore, for a system with a non-monotonic elas-
tic force, stability conditions, obtained by perturbation 
methods, should be taken very cautiously.  

Analogously, the presence of the stability interval 
),( 21 ωω  on the branch )(2 ωA  (Figure 3,b) in a system 

with a repulsive force )(xf cannot be found by pertur-
bation methods, because here the generating system 
( )0=p  has no a periodic solution.   

The break of stability in systems (1) and (2) with 
softening nonlinearity is explained as follows. The 
stability of a periodic solution )(tx  is determined by 
the corresponding variational equation  

0)( =+ ytay&&                              (3) 

where )2/()( Ttata +=  when )()( xfxf −−= . For a 
periodic solutions )(1 tx  with small amplitude 1A , 

0)( >ta  and equation (3) belongs to the zero stability 
region of Hill equation (3) [4]. As 1A  increases, )(ta  

becomes sign-varying and for some *
11 AA = , equation 

(3) passes to the zero instability region. Meanwhile, in 
a system with monotonic )(xf , 0)( >ta  for all 1A .  

On contrary, in system (1) with non-monotonic 
hardening nonlinearity, 0)( <ta  for small 1A , so the 
corresponding solutions )(1 tx  are unstable. As 1A  in-
creases, )(ta  becomes sign-varying and stability be-

gins with some *
11 AA = . 

 
2. Mathematical model of a swing   

Swinging is realized by squatting and raising; as a 
result, the distance l  between the center of gravity and 
the  suspension  point  changes  (Figure 5,a).  Under a 

 
Figure 5 

 
periodic motion, the function )(tl  is also periodic, so 
the swing is usually modeled with a pendulum having 
a periodic length (Figure 5,b). The corresponding 
equation is 

0sin)(])([ 2 =++⋅ xtglxxtl ωµω && .        (4)                              

x  
tωε sin  

0l  
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     In a qualitative analysis of equation (4) [5] it was 
assumed that  

)()()( lTtltltl +=−= , ωπ /2=lT ,   

 0)( ≥tl&   for  )2/,0( lTt ∈ . 

The last condition means that the length changes 
monotonically between the minimal and maximal val-
ues )0(l  and )/( ωπl . No restrictions on oscillations 
amplitude and the variation of the pendulum length 
were imposed. 
     The main parametric oscillations ( ωπ /4=T ) were 
studied. There exist two such families, ),(1 ωtx  and 

),(2 ωtx ; their amplitude-frequency characteristics 
)(ωiA  are qualitatively the same as that in Figure 4; 

πω →)(iA  as 0→ω . The corresponding trajectories 
of the pendulum are shown in Figure 5,b. As is seen, 
for the solution ),(1 ωtx  ( )),(2 ωtx  the length )(tl  
reaches its minimal (maximal) value when the pendu-
lum passes the equilibrium position. 

Stability analysis showed that the solutions ),(1 ωtx  
are certainly stable for as long as the amplitudes do not 
exceed 2/π . For some ),2/(1

*1 ππ∈= AA , the stabil-
ity breaks, so the oscillations with amplitudes close to 
π  are unstable. The solutions )),(2 ωtx  are unstable 
for all ω .  

The above results, being applied to a swing, come 
to the following contradiction. As is seen from Figure 
5,a, the center of the gravity takes its lower position 
when the swing passes the equilibrium point. So, oscil-
lations of a swing correspond to the solutions ))(2 tx . 
However, as is mentioned above, such solutions are 
unstable and, therefore, not physically realizable.  

The obtained contradiction shows that the paramet-
rically excited pendulum cannot serve as a mathemati-
cal model of a swing. The case is that the behavior of a 
man on a swing (and, therefore, the length of the corre-
sponding pendulum) is determined not by the time but 
the current position and velocity of the swing. There-
fore, a swing should be simulated with a self-
oscillatory pendulum whose length depends on the 
angle coordinate and velocity ( ),( xxll &= ).  

Two such models of a swing were considered [5]. 
For the first one, the length increases, for the second 
decreases as the swing moves to the equilibrium posi-
tion. Numerical calculations showed that each model 
has a unique limit cycle, corresponding to a periodic 
oscillation of the swing. Thus, it is also possible to 
raise when a swing moves down and squat when it 
moves up (however, in this case the oscillation ampli-
tudes are smaller).   

 
3. Stability regions of parametric oscillations  
The following results relate to stability of paramet-

ric oscillations in Hamiltonian systems. They are desc- 

ribed by the equation   

xtHxJ ),( µω=&                          (5)                                                 

where ),2(),( µπωµω += tHtH  is a symmetric and 
J  is a skew-symmetric matrix of order 2 n , ω  is a 
frequency of parametric excitation, the parameter  µ  
characterizes its intensity ( ),( µωtH  increases in µ , 

0)0,( HtH =ω  is a constant matrix).  
The basis of the contemporary theory of such equa-

tions is laid by Krein, Gel’fand, Lidskii, Yakubovich 
and other researchers. Unfortunately, the proofs of 
many theorems are very laborious and use quite com-
plex mathematical tools [4]. A new approach to the 
theory, developed in [6], enabled us to substantially 
simplify the proofs of main theorems and obtain some 
new qualitative results on stability of equation (5).  

The stability regions are usually plotted in the plane 
ωµ ,  (Figure 6 where the instability regions are 

shaded). The boundaries −
iω and ,+

iω  ,...2,1=i are 
calculated using numerical or approximate analytical 
methods. Then it is accepted that the regions between 
these boundaries correspond to unstable solutions 
while for the rest values of the parameters µ  and ω , 
equation (5) is stable. However, such approach is not 
justified (in principle, it is not excluded that there are 
“islands” of instability within the stability regions, and 
vice versa). It is proved [6] that the first case is impos-
sible, i.e., the regions between neighboring instability 
boundaries, emanating from different points iω , are 
completely stable. On contrary, it was found that 
within instability regions some stability ones may exist 
(in Figure 6 such a region emerges from the point K ).   

    

 
Figure 6 

 
As is known [4], for any µ , ω , corresponding to a 

boundary of a stability region, equation (5) has an in-
definite Floquet multiplier on the unit circle; generi-
cally, its multiplicity 2=r . The stability region indi-
cated above may arise only if equation (5), correspond-
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ing to the point K , has an indefinite multiplier of an 
order 3≥r . Thus, such effect may appear in systems 
of an order 3≥n only.  

 
4. Exponential stability of uncertain nonlinear 

systems with delay 

Consider the equation  

)),((()()()( tttxftxtAtx τ−=+& ,          (6), 

xktxf ≤),(  
where nRx ∈ , ],0[)( ∞<∈ Htτ  is a delay function, ⋅  
means an Euclidean norm. 

Equation (6) is called exponentially stable if for 
any ),( txf  and )(tτ , satisfying the above conditions, 
and a given initial function )()(0 txtx =  for 

]0,[ Ht −∈ , the corresponding solution  )(tx  exponen-
tially tends to zero. 

Let ),( stW  ( )),( 2nIttW =  be the transfer matrix 
for equation =+ )()()( txtAtx& 0. We put  

∫=
t

dsstWtv
0

),()( ,  )(lim tvv =∞  for ∞→t .          (7) 

It is proved [7] that for exponential stability of sys-
tem (5), it is sufficient that  

∞< vk /1 .                                   (8)                                                               

In the following cases this condition is also neces-
sary. 

1. The matrix ),( stW  is nonnegative for st > . 
2. The matrix A  in (6) is constant and symmetric.  

Note that the first condition is, in particular, ful-
filled when the off-diagonal elements of the matrix 

)(tA  are non-negative.  
In the both cases the precise critical value of the pa-

rameter k  equals ∞= vk /1* . It is interesting to note 
that the stability breaks for xkxf *)( ≡ , i.e., the “most 
destabilizing” unknown term is linear. Another surpris-
ing feature is that the value *k  is invariant with the 
delay function )(tτ . 

In systems with one nonlinearity, 
)),((( tttbf τσϕ −= , ),( xc=σ  where b  and c  are 

vectors; the scalar function ),( tσϕ  satisfies the ine-
quality  

σσϕ kt ≤),( . 

The goal is to find necessary and sufficient stability 
conditions expressed in the value k and the matrix 

)(tA . The problem is reduced to the Volterra equation  
 

∫ −+=
t

ssssstwtft
0

d ))),(((),()()( τσϕσ       (9) 

where ),( stw  is the transfer function. 
Note that in the absence of the delay, this problem 

(called the Lur’e problem) is classical. In spite of great 
number of the corresponding papers, the problem re-
mains unsolved even in the case of constant A  (only 
sufficient stability conditions are obtained).  

At the first sight, the presence of an unknown delay 
function )(tτ  should substantially complicate the prob-
lem. Actually, this enabled us to obtain a precise solu-
tion of the problem [8]. Namely, inequality (8) (where) 

),( stW  is replaced by ),( stw ), provides the required 
necessary and sufficient stability condition for system 
(9).   

Note that if 0),( ≥stw  for st > , the stability 
breaks for σσϕ *),( kt ≡  and any )(tτ .  If ),( stw  is 
sign-varying, the destabilizing function ),( tσϕ  
changes from σ*k  to σ*k− , and vice versa, while  

)(tτ  is a saw-like function (so that the function 
)(tt τ−  is piece-wise constant) [8]. Thus, in the case of 

sign-varying ),( stw , condition (8) is not invariant 
with )(tτ .  
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