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Abstract
A linear mechanical system with constant matrix of

dissipative forces and continuous and bounded matrices
of positional forces is studied. It is assumed that there
are a large positive multiplier at the vector of dissipa-
tive forces and a constant delay in positional forces. The
case is considered where the associated delay-free aver-
aged system is asymptotically stable. With the aid of the
Lyapunov direct method and the averaging method, con-
ditions are derived under which neither delay nor time-
varying perturbations with zero mean values disturb the
asymptotic stability. The developed approach is used in
the problem of monoaxial stabilization of a rigid body.
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1 Introduction
The averaging method is a powerful tool for the inves-

tigation of dynamics of time-varying systems [Bogoli-
ubov and Mitropolsky, 1961; Grebennikov, 1986; Khalil,
2002]. It allows us to determine conditions under which
conclusions on the properties of original nonstationary
systems can be obtained via analysis of the associated
time-invariant averaged systems. This method is espe-
cially effectively used for the stability investigation (see,
for instance, [Grebennikov, 1986; Khapaev, 1993; Peute-
man and Aeyels, 1999; Aleksandrov and Efimov, 2022]).

There are different approaches to solving stability
problem for nonstationary systems on the basis of av-
eraging. One of such approaches is the Lyapunov direct
method. In particular, in the papers [Mitropolsky and
Martynyuk, 1980; Bodunov and Kotchenko, 1988; Sos-

nitskii, 2010], special constructions of Lyapunov func-
tions were proposed for linear systems whose matrices
contain small parameters and time-varying perturbations
with zero mean values. On the other hand, in [Fridman
and Zhang, 2020], an original technique based on the
artificial introducing delays in the considered systems
and constructing Lyapunov–Krasovskii functionals was
used. This technique was applied for both delay-free and
time-delay linear systems.

It should be noted that the approaches developed
in [Mitropolsky and Martynyuk, 1980; Bodunov and
Kotchenko, 1988; Sosnitskii, 2010; Fridman and Zhang,
2020] permit us not only to derive stability conditions
but also to deduce estimates for admissible values of
small parameters under which stability of associate av-
eraged systems implies that for the perturbed systems.

However, it is worth mentioning that the results
of [Mitropolsky and Martynyuk, 1980; Bodunov and
Kotchenko, 1988; Sosnitskii, 2010; Fridman and Zhang,
2020] were obtained for delay-free linear systems with
periodic or almost periodic right-hand sides. The goal
of the present contribution is an extension of approaches
from [Mitropolsky and Martynyuk, 1980; Bodunov and
Kotchenko, 1988; Sosnitskii, 2010] to some types of
time-delay systems with nonstationary perturbations that
are not necessarily periodic or almost periodic.

We consider a linear mechanical system with a large
positive parameter as a multiplier at the constant ma-
trix of dissipative forces and with nonstationary posi-
tional forces containing time-delay terms. It is assumed
that the associated delay-free averaged system is asymp-
totically stable. With the aid of a special construction
of Lyapunov–Krasovskii functional, conditions ensuring
asymptotic stability for the original system are derived.

Moreover, the proposed approach is applied to the
problem of monoaxial stabilization of a rigid body.
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2 Statement of the Problem
Let the motions of a mechanical system be modeled by

the equations

Aẍ(t) + hBẋ(t) +C(t)x(t) +D(t)x(t− τ) = 0. (1)

Here x(t), ẋ(t) ∈ Rn are vectors of generalized coor-
dinates and velocities, respectively, A is a constant sym-
metric and positive definite matrix of inertial character-
istics of the system, B is a constant symmetric and pos-
itive definite matrix of dissipative forces, matrix func-
tions C(t) and D(t) are continuous and bounded for
t ∈ [0,+∞), h is a positive parameter, τ is a constant
positive delay. The term D(t)x(t−τ) can be interpreted
as a result of application of a control with delay in the
feedback law [Fridman, 2014; Andreev and Peregudova,
2021; Khac, Vlasov and Pyrkin, 2022].

Assume that initial functions for solutions of (1) be-
long to the spaceC1([−τ, 0],Rn) of continuously differ-
entiable functions φ(ξ) : [−τ, 0] → Rn with the uniform
norm

∥φ∥τ = sup
ξ∈[−τ,0]

(∥φ(ξ)∥+ ∥φ̇(ξ)∥) ,

where ∥ · ∥ is the Euclidean norm of a vector. Denote
by xt the restriction of a solution x(t) to the segment
[t− τ, t], i.e., xt : ξ 7→ x(t+ ξ) for ξ ∈ [−τ, 0].

Assumption 1. Let

1

T

∫ t+T

t

C(s)ds→ C̄,
1

T

∫ t+T

t

D(s)ds→ D̄

as T → +∞ uniformly with respect to t ≥ 0.

Thus, C(t) = C̄ + C̃(t), D(t) = D̄+ D̃(t), where the
matrices C̃(t), D̃(t) have zero mean values.

Remark 1. Under Assumption 1, the associated aver-
aged system for (1) is

Aẍ(t) + hBẋ(t) + C̄x(t) + D̄x(t− τ) = 0.

Assumption 2. The matrix C̄ + D̄ is positive definite.

Remark 2. It is well-known [Merkin, 1997] that if As-
sumption 2 is fulfilled, then the corresponding delay-free
system

Aẍ(t) + hBẋ(t) + (C̄ + D̄)x(t) = 0 (2)

is asymptotically stable.

We look for conditions guaranteeing that neither delay
nor time-varying perturbations disturb the stability. Us-
ing the Lyapunov direct method, we will show that, for
any given τ > 0, one can choose sufficiently large value
of the parameter h for which the system (1) is asymptot-
ically stable.

Furthermore, we will apply the obtained result to the
problem of monoaxial stabilization of a rigid body.

Remark 3. It is worth noticing that, for the stability
analysis of the system (1), one can try to use the ap-
proach developed in [Fridman and Zhang, 2020]. How-
ever, in [Fridman and Zhang, 2020], more conserva-
tive constraints on nonstationary perturbations were im-
posed. In addition, the stability conditions derived in
[Fridman and Zhang, 2020] are formulated in terms of
feasibility of systems of linear matrix inequalities of high
dimension. Such conditions can be effectively verified
for given numerical values of system parameters, but it
is problematic to obtain with their help explicit analytical
dependencies for admissible values of the parameters.

3 Stability Conditions
We will use the approaches for the construction of Lya-

punov functions and Lyapunov–Krasovskii functionals
developed in [Antonchik, 1983; Efimov and Aleksan-
drov, 2021; Aleksandrov, 1996; Aleksandrov, Aleksan-
drova and Zhabko, 2013].

Theorem 1. Let Assumptions 1 and 2 be fulfilled. Then,
for any delay τ > 0 there exists h0 > 0 such that if
h ≥ h0, then the system (1) is asymptotically stable.

Proof. First, according to [Antonchik, 1983], a Lya-
punov function for (2) can be chosen as follows:

V1(x, ẋ) =
1

2
ẋ⊤Aẋ+

h

2
x⊤Bx+ x⊤Aẋ.

Differentiating this function along the solutions of (1) we
obtain

V̇1 = −hẋ⊤(t)Bẋ(t) + ẋ⊤(t)Aẋ(t)

−ẋ⊤(t)(C(t)x(t) +D(t)x(t− τ))− x⊤(t)C̃(t)x(t)

−x⊤(t)(C̄ + D̄)x(t) + x⊤(t)D̄(x(t)− x(t− τ))

−x⊤(t)D̃(t)x(t− τ) ≤ −(ha1 − a2)∥ẋ(t)∥2

−a3∥x(t)∥2 + a4∥ẋ(t)∥∥x(t)∥+ a5∥ẋ(t)∥∥x(t− τ)∥

−x⊤(t)C̃(t)x(t) + x⊤(t)D̄(x(t)− x(t− τ))

−x⊤(t)D̃(t)x(t− τ).

Here a1, a2, a3, a4, a5 are positive constants.
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Next, using the approach proposed in [Efimov and
Aleksandrov, 2021], construct a Lyapunov–Krasovskii
functional in the form

V2(xt) = V1(x(t), ẋ(t))− x⊤(t)

∫ t

t−τ

D̃(ξ + τ)x(ξ)dξ

−x⊤(t)D̄
∫ t

t−τ

x(ξ)dξ+

∫ t

t−τ

(λ+β(ξ−t+τ)∥x(ξ)∥2dξ,

where λ and β are positive parameters.
Differentiating this functional along the solutions of

(1) we arrive at the estimate

V̇2 ≤ −(ha1 − a2)∥ẋ(t)∥2 − (a3 − λ− βτ)∥x(t)∥2

−λ∥x(t− τ)∥2 + ∥ẋ(t)∥(a4∥x(t)∥+ a5∥x(t− τ)∥)

+a6∥ẋ(t)∥
∫ t

t−τ

∥x(ξ)∥dξ − β

∫ t

t−τ

∥x(ξ)∥2dξ

−x⊤(t)C̃(t)x(t)− x⊤(t)D̃(t+ τ)x(t),

where a6 = const > 0.
Finally, according to the approach developed in [Alek-

sandrov, 1996; Aleksandrov, Aleksandrova and Zhabko,
2013], define a nonstationary functional by the formula

V3(t, xt) = V2(xt) + x⊤(t)

∫ t

0

eε(u−t)C̃(u)dux(t)

+x⊤(t)

∫ t+τ

0

eε(u−t−τ)D̃(u)dux(t).

Here ε is a positive parameter.
The functional V3(t, xt) and its derivative along the so-

lutions of (1) satisfy the inequalities

b1∥ẋ(t)∥2 + hb2∥x(t)∥2 − b3∥x(t)∥∥ẋ(t)∥

−b4
√
τ∥x(t)∥

(∫ t

t−τ

∥x(ξ)∥2dξ
)1/2

+ λ

∫ t

t−τ

∥x(ξ)∥2dξ

−b5
ε
∥x(t)∥2 ≤ V3(t, xt) ≤ b6∥ẋ(t)∥2 + hb7∥x(t)∥2

+(λ+ βτ)

∫ t

t−τ

∥x(ξ)∥2dξ + b3∥x(t)∥∥ẋ(t)∥

+
b5
ε
∥x(t)∥2 + b4

√
τ∥x(t)∥

(∫ t

t−τ

∥x(ξ)∥2dξ
)1/2

,

V̇3 ≤ −(ha1 − a2)∥ẋ(t)∥2 − (a3 − λ− βτ)∥x(t)∥2

−λ∥x(t− τ)∥2 + ∥ẋ(t)∥(a4∥x(t)∥+ a5∥x(t− τ)∥)

+a6
√
τ∥ẋ(t)∥

(∫ t

t−τ

∥x(ξ)∥2dξ
)1/2

−β
∫ t

t−τ

∥x(ξ)∥2dξ

+
b8
ε
∥x(t)∥∥ẋ(t)∥+ ε

∥∥∥∥∫ t

0

eε(u−t)C̃(u)du

∥∥∥∥ ∥x(t)∥2

+ε

∥∥∥∥∫ t+τ

0

eε(u−t−τ)D̃(u)du

∥∥∥∥ ∥x(t)∥2,
where bj > 0, j = 1, . . . , 8.

It is known (see [Bogoliubov and Mitropolsky, 1961]),
that

ε

∥∥∥∥∫ t

0

eε(u−t)C̃(u)du

∥∥∥∥→ 0 as ε→ 0,

ε

∥∥∥∥∫ t+τ

0

eε(u−t−τ)D̃(u)du

∥∥∥∥→ 0 as ε→ 0

uniformly with respect to t ≥ 0. Hence, one can choose
and fix the tuning parameters ε, λ, β such that λ+ βτ <
a3/4 and

ε

∥∥∥∥∫ t

0

eε(u−t)C̃(u)du

∥∥∥∥ ≤ a3
8
,

ε

∥∥∥∥∫ t+τ

0

eε(u−t−τ)D̃(u)du

∥∥∥∥ ≤ a3
8

for all t ≥ 0. Then

V̇3 ≤ −(ha1−a2)∥ẋ(t)∥2−
a3
2
∥x(t)∥2−λ∥x(t− τ)∥2

+∥ẋ(t)∥(a4∥x(t)∥+ a5∥x(t− τ)∥) + b8
ε
∥x(t)∥∥ẋ(t)∥

+a6
√
τ∥ẋ(t)∥

(∫ t

t−τ

∥x(ξ)∥2dξ
)1/2

−β
∫ t

t−τ

∥x(ξ)∥2dξ.

Applying the Sylvester criterion, we obtain that if

h >
1

b2

(
b5
ε

+
b23
4b1

+
τb24
4λ

)
,

h >
1

a1

(
a2 +

1

2a3

(
b8
ε

+ a4

)2

+
a25
4λ

+
τa26
4β

)
,

then there exist positive numbers c1, c2, c3 such that

c1

(
∥ẋ(t)∥2 + ∥x(t)∥2 +

∫ t

t−τ

∥x(ξ)∥2dξ
)

≤ V3(t, xt)

≤ c2

(
∥ẋ(t)∥2 + ∥x(t)∥2 +

∫ t

t−τ

∥x(ξ)∥2dξ
)
,

V̇3 ≤ −c3
(
∥ẋ(t)∥2 + ∥x(t)∥2 +

∫ t

t−τ

∥x(ξ)∥2dξ
)
.

Hence (see [Fridman, 2014]), the system (1) is asymp-
totically stable. This completes the proof. □
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4 Monoaxial Stabilization of a Rigid Body
Next, we will show that the developed approach can

be applied to problems of the attitude control of rigid
bodies.

Consider a rigid body rotating around its mass center
O with angular velocity ω. Let the axes Oxyz be prin-
cipal central axes of inertia of the body. The Euler equa-
tions modeling the attitude motion of the body under the
action of a control torque M have the form

Jω̇(t) + ω(t)× (Jω(t)) =M, (3)

where J = diag{A1, A2, A3} is a body inertia tensor in
the axes Oxyz, see [Beletsky, 1965].

Let unit vectors s and r be given. The vector s is con-
stant in the inertial space, whereas the vector r is con-
stant in the body-fixed frame. Then vector s rotates with
respect to the system Oxyz with the angular velocity
−ω. Hence,

ṡ(t) = −ω(t)× s(t). (4)

As a result, we obtain the system consisting of the Euler
dynamic equations (3) and the Poisson kinematic equa-
tions (4).

Consider the problem of monoaxial stabilization of the
body [Zubov, 1978]: it is required to design a con-
trol torque M ensuring that system (3), (4) admits the
asymptotically stable equilibrium position

ω = 0, s = r. (5)

In [Zubov, 1978], it was proved that the torque M can
be chosen as the sum of dissipative component M1 and
restoring one M2: M =M1 +M2, where

M1 = −hBω, M2 = −as× r,

h and a are positive coefficients, B is a constant sym-
metric positive definite matrix.

In the paper [Aleksandrov and Tikhonov, 2018], with
the aid of the averaging method, the impact of time-
varying perturbations with zero mean values on the sta-
bility of the equilibrium position (5) was studied. In this
section, along with nonstationary perturbations, we will
take into account delay in control and disturbed torques.

Let the Euler equations be of the form

Jω̇(t) + ω(t)× (Jω(t)) = −hBω(t)− c̄s(t)× r

−d̄s(t−τ)×r+C̃(t)(s(t)−r)+D̃(t)(s(t−τ)−r). (6)

Here h, c̄, d̄ are constant coefficients with h > 0, B
is a constant symmetric positive definite matrix, ma-
trices C̃(t) and D̃(t) are continuous and bounded for
t ∈ [0,+∞), τ > 0 is a constant delay.

Assumption 3. Let

1

T

∫ t+T

t

C̃(s)ds→ 0,
1

T

∫ t+T

t

D̃(s)ds→ 0

as T → +∞ uniformly with respect to t ≥ 0.

Remark 4. Thus, the disturbed torques admit zero mean
values. It is well-known (see [Beletsky, 1965; Giri and
Sinha, 2017; Akulenko, Leshchenko and Chernous’ko,
1986]), that perturbations of a such type are often used in
models of satellites moving in circular or elliptic orbits.

Assumption 4. The inequality c̄+ d̄ > 0 is valid.

Theorem 2. Let Assumptions 3 and 4 be fulfilled. Then,
for any delay τ > 0 there exists h0 > 0 such that if
h ≥ h0, then the equilibrium position (5) of the system
(4), (6) is asymptotically stable.

Proof. In a similar way as in the proof of Theorem
1, we sequentially construct a Lyapunov function and
Lyapunov–Krasovskii functionals by the following for-
mulae:

V1(ω, s) =
1

2
ω⊤Jω +

h

2
∥s− r∥2 + (s× r)⊤B−1Jω,

V2(ω(t), st) = V1(ω(t), s(t))

+d̄(s(t)× r)⊤B−1

(
r ×

∫ t

t−τ

s(ξ)dξ

)

+(s(t)× r)⊤B−1

∫ t

t−τ

D̃(ξ + τ)(s(ξ)− r)dξ

+

∫ t

t−τ

(λ+ β(ξ − t+ τ)∥s(ξ)− r∥2dξ,

V3(t, ω(t), st) = V2(ω(t), st)

−(s(t)× r)⊤B−1

∫ t+τ

0

eε(u−t−τ)D̃(u)du(s(t)− r)

−(s(t)× r)⊤B−1

∫ t

0

eε(u−t)C̃(u)du(s(t)− r),

where ε, λ, β are positive parameters.
With the aid of the same arguments as in the proof

of Theorem 1, it can be verified that, under appropriate
choice of tuning parameters ε, λ, β and for sufficiently
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large value of h, there exist positive numbers δ, c1, c2, c3
such that

c1

(
∥ω(t)∥2 + ∥s(t)− r∥2 +

∫ t

t−τ

∥s(ξ)− r∥2dξ
)

≤ V3(t, ω(t), st) ≤ c2

(
∥ω(t)∥2

+∥s(t)− r∥2 +
∫ t

t−τ

∥s(ξ)− r∥2dξ
)
,

V̇3 ≤ −c3
(
∥ω(t)∥2

+∥s(t)− r∥2 +
∫ t

t−τ

∥s(ξ)− r∥2dξ
)

for ∥ω(t)∥+ ∥s(t)− r∥ < δ. This completes the proof.
□

5 Example
In [Sosnitskii, 2010], with the aid of the averaging

method, asymptotic stability conditions were obtained
for the scalar equation

ẍ(t) + hẋ(t) + (1 + b cosωt)x(t) = 0, (7)

where x(t) ∈ R and h, b, ω are positive parameters. It
is worth mentioning that (7) can be interpreted as linear
approximation for the equation modeling oscillations of
a pendulum in a periodically varying gravitational field
and a resisting medium.

In this section, we consider the corresponding time-
delay equation

ẍ(t) + hẋ(t) + (1 + b cosωt)x(t− τ) = 0, (8)

where τ = const > 0. In this case the appearance of
delay may be caused by network communication of the
control signal, whereas the term b cosωt may character-
ize control deviations from a prescribed values due to
nonstationary perturbations.

It is easy to verify that Assumptions 1 and 2 are ful-
filled for the equation (8). Hence, for sufficiently large
h, this equation is asymptotically stable.

To derive lower bounds for admissible values of the
parameter h, one can apply the approach proposed in the
proof of Theorem 1. It should be noted that, in this case,
when constructing the functional V3, we can take ε = 0.

As a result, we arrive at the following conditions:

h > 1 +
2b

ω
+
τ(1 + b)2

2λ
,

h > 1 +
b2

ω2(1− λ− βτ)
+

1 + b

4λ
+
τ

β
,

where tuning positive parameters λ and β satisfy the in-
equality λ+ βτ < 1.

Eliminating the parameter β, we obtain

h > 1 + min
λ∈(0,1)

max{ψ1(λ), ψ2(λ)}.

Here

ψ1(λ) =
2b

ω
+
τ(1 + b)2

2λ
,

ψ2(λ) =
1 + b

4λ
+

(b+ τω)2

ω2(1− λ)
.

It should be noted that ψ′
2(λ) = 0 as

λ = λ∗ =
ω
√
1 + b

ω
√
1 + b+ 2(b+ τω)

.

Hence, if ψ1(λ∗) ≤ ψ2(λ∗), then h > ψ2(λ∗), and if
ψ1(λ∗) > ψ2(λ∗), then h > ψ2(λ̂), where

λ̂ =
−p2 +

√
p22 − 4p1p3
2p1

, p1 =
2b

ω
,

p2 =

(
b

ω
+ τ

)2

− 2b

ω
+
τ(1 + b)2

2
− 1 + b

4
,

p3 =
1 + b

4
− τ(1 + b)2

2
.

6 Conclusion
In the present contribution, new asymptotic stabil-

ity conditions are derived for considered nonstationary
mechanical systems. Using original constructions of
Lyapunov–Krasovskii functionals, it was shown that, for
any given constant delay, one can choose sufficiently
large multiplier at the vector of the dissipative forces
for which the asymptotic stability can be guaranteed.
The proofs of the theorems provide us a constructive ap-
proach for finding lower bounds for admissible values of
the above multiplier.

An interesting direction for further research is an ex-
tension of the obtained results to systems with dis-
tributed delays.
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