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Hugo G. González-Hernández
Physics and Electronics Department

Tecnológico de Monterrey, Campus Puebla
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Abstract
Synchronization of chaotic systems is a widely stud-

ied problem, it has been cast using several techniques
relying on different control schemes in order to force
an accesible variable of some system to behave exactly
in the same way that some other variable pertaining to
another system or systems. In this paper, we develop
a general framework to deal with state-synchronization
of a class of chaotic systems with full relative degree.
Conditions for synchronization are proposed and sim-
ulation results are shown for identical with parameter
mismatch and for nonidentical chaotic systems.
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1 Introduction
Great advances have been achieved since Pecora and

Carroll proposed a synchronization scheme in their
seminal paper [Pecora and Carrol, 1990]; in this pa-
per, they cast the synchronization problem proposing
a master-slave approach in which some available sig-
nal from the master system is input to a slave sub-
system having the same structure of the master. This
approach has been used in several works later on. In
[Alvarez, 1996] synchronizability conditions are for-
mally stated and applied to the Lorenz system [Lorenz,
1963]. It has been applied also to dual inverted pen-
dula [Dongfang and Di, 2008]. Non-forced synchro-
nization has been analized including bifurcation struc-
tures for non-identical Duffing oscillators [Vincent and
Kenfack, 2008]. Since then, multiple synchronization
strategies have been proposed to deal with the prob-

lem in many aspects. An important still open prob-
lem is to synchronize chaotic systems through a driving
signal in a non-master-slave framework. An example
of this kind of strategies can be found in [Hong, Qin,
and Chen, 2001] in which authors develop an adaptive
synchronization approach or in [Sarasola et al., 2003]
where a synchronization technique was proposed using
a linear feedback coupling. A robust synchronization
strategy was proposed in [Alvarez et al., 2010] using
sliding modes control. Lately, synchronization prob-
lem has been naturally extended to complex networks
[Duan, Chen, and Huang, 2007], consensus and pin-
ning are significant examples [Olfati-Saber, Alex Fax,
and Murray, 2007]. In this paper we deal with synchro-
nization problem for a class of chaotic systems known
as full relative degree systems, we propose a nonlinear
feedback synchronization law for state synchronization
of systems with parameter mismatch and non-identical
possibly nonsmooth systems.
The paper is organized as follows. Section 2 states

the synchronization problem and defines the class of
chaotic systems under consideration. Section 3 gives
conditions and formally states the proposed synchro-
nization strategy. In section 4 some results are shown
on synchronization strategy applied to well-known
chaotic systems. Finally we conclude with a discussion
and some future work.

2 Systems under Consideration
Consider systems of the form

ẋj = F j(x) +Gj(x)u (1)
yj = Hj(x)
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for j = 1, 2 and vector fields F j(x) and Gj(x), states
xj ∈ Rn, u ∈ R and F j(x) possibly describing chaotic
behavior.

Definition 1. (State synchronization) Let a couple of
systems of the form (1) to have chaotic behavior and
F j(x) possibly being a nonsmooth vector field for some
i. Both systems state-synchronized if

lim
t→∞

|x1 − x2| = 0 (2)

Thus, the state-synchronization error can be expressed
as

e(t) = x1(t)− x2(t) (3)

Systems under consideration are in the so-called nor-
mal form, and for a system like (1) to be written in nor-
mal form, it is needed that it has full relative degree, we
give the following definitions.

Definition 2. (Full relative degree) System (1) is said
to have full relative degree if
i) LGL

k
FH(x) = 0, k = 0, 1, ..., n− 2

ii) LGL
n−1
F H(x) 6= 0

where LFH(x) = ∂H(x)
∂x F (x) denotes the Lie deriva-

tive of H(x) along F(x), L0
FH(x) = H(x).

Let us now consider systems that are written in normal
form

Theorem 1. The following system has full relative de-
gree

ẋi = xi+1, (i = 1, ..., n− 1) (4)
ẋn = f(x) + g(x)u

y = x1

for f(x) and g(x) 6= 0 scalar functions and x =[
x1, x2, ..., xn

]T
the state vector.

Proof. Let us define

F (x) =


x2
x3
...

f(x)

 ;G(x) =


0
0
...

g(x)

 (5)

and H(x) = h(x) = x1, in order to prove condition i)
from definition 2, we find

LFH(x) = x2

L2
FH(x) = x3

...
Ln−2
F H(x) = xn−1

LGL
n−2
F H(x) = 0

Condition ii) is proven as follows

Ln−1
F H(x) = xn

LGL
n−1
F H(x) = g(x) 6= 0

Corollary 1. Let a system like (1) to have full relative
degree. Then it can be rewritten in its normal form
through the following coordinates change xj = ϕ(x)
for system j.

xji = ϕi(x) = Li−1
F FH(x) (6)

for i = 1, 2, ..., n.

For proof of Corollary 1 please refer to [Isidori, 2000]
and [Nijmeijer and Van Der Schaft, 1996]. We cope
with nonlinear chaotic full relative degree systems pos-
sibly containing nonsmooth dynamics.

3 Synchronization Strategy
Consider a couple of systems of the form:

ẋji = xji+1, (i = 1, ..., n− 1) (7)

ẋjn = f j(xj) + gj(xj)u

yj = xj1

for j = 1, 2, xi ∈ Rn, i = 1, 2..., n, and f j and gj

scalar functions. Let the state synhcronization error be
defined by (3), then dynamics for the synchronization
error can be expressed by

ėi = ei+1, (i = 1, ..., n− 1) (8)
ėn = f(x1, x2) + g(x1, x2)u

y = e1

where f(x1, x2) = f1(x1) − f2(x2) and g(x1, x2) =
g1(x1) − g2(x2). The synchronization error dynamics
is again in normal form.

3.1 Controllabillity for Synchronization:
Synchronizability

A system like (8) with functions involving states from
different systems should be analized for assuring con-
trollability. For error synchronization dynamics, let us
now define:

F (e) =


e2
e3
...

f(x1, x2)

 ;G(e) =


0
0
...

g(x1, x2)

 (9)

and extended state x =
[
(x1)T (x2)T

]T
Let us give

some preliminary definitions [Nijmeijer and Van Der
Schaft, 1996].
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Definition 3. (Lie Brackets) Consider vector fields
F (e) and G(e) in Rn according to (5). Then the Lie
Bracket operation generates a new vector field:

[F,G] =
∂G

∂x
F − ∂F

∂x
G. (10)

Higher order Lie Brackets can be obtained as

(ad1F , G) = [F,G]

(ad2F , G) = [F, [F,G]]

...

(adkF , G) = [F, (adk−1F , G)].

Thus, we introduce the following proposition

Proposition 1. (Synchronizability) The system defined
by (8), is locally accesible about e = 0 if the accesibil-
ity distribution C spans n space. C is defined by:

C = [g, [adkF g]] (11)

for k = 1, 2, ..., i.e. distribution C is involutive.

This will be considered as the synchronizability condi-
tion further on.

3.2 The Synchronization Law
Let us define the error vector e =

[
e1 e2 ... en

]T
, and

some constant vector a =
[
−an −an−1 ... −a1

]T
,

such that the polynomial λn + a1λ
n−1 + ... + an is

strictly Hurwitz. Then, provided synchronizability con-
ditions a synchronization control law can be stated for
(8) in the following form

u =
aT e− f(x1, x2)

g(x1, x2)
(12)

Application of (12) over (8) leads to the following lin-
ear, asymptotically stable dynamics:

ėi = ei+1, (i = 1, ..., n− 1) (13)
ėn = aT e

y = e1

which can be expressed as ė = Ae whose equilibrium
point e = 0 is asymptotically stable, meaning that syn-
chronization error vanishes when t→∞.

4 Simulation Results
In the following subsections we will describe some

simulation results for synchronization law proposed ap-
plied to several well-known chaotic systems.

4.1 Continuous Case
For simulation purposes we have chosen a slightly

different system from one of the circuits proposed in
[Sprott, 2000] which may exhibit chaotic behavior for
certain set of parameters. Circuit chosen is of the form:

...
x = −µẍ+ ẋ2 − x+ βu (14)

which exhibits chaotic behavior for µ = −2.017 and
β = 0, Lyapunov exponents are (0.055, 0,−2.072). It
is easy to show that (14) has full relative degree by se-
lecting output y = x, thus a couple of Sprott-like cir-
cuits can be written as follows

ẋj1 = xj2 (15)

ẋj2 = xj3

ẋj3 = −xj1 + (xj2)
2 + µjx

j
3 + βju

yj = xj1

for j = 1, 2. Let us define the error e1 = x11 − x21 =
y1 − y2, then the error dynamics are depicted as

ė1 = e2 (16)
ė2 = e3

ė3 = −e1 + e2(e2 + 2x22) + µ1x
1
3 − µ2x

2
3 + β̃u

for β̃ = β1 − β2 and β1 6= β2. Systems (15) show
chaotic behavior for µj = −2.017, βj = 0, (j = 1, 2)
and initial conditions xj(0) =

[
0 0 1

]T
.

Figure 1. Time evolution for x1 variable of system (15) for µ1 =
−2.017
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Clearly, if µ1 = µ2 and x1(0) = x2(0), circuits are
perfectly synchronized. In order to prove our proposal,
we use µ1 = −2.017 and µ2 = −2.02. Fig. 1 shows
solution for x1 for system 14. Although this parameter
mismatch appears to be nonsignificant, time responses
for both systems diverge considerably as shown in Fig.
2.

Figure 2. Error for x1 of systems (15) with respect to time consid-
ering parameter mismatch

In order to synchronize the states (and outputs) of both
systems e→ 0, we propose the synchronization law:

u =
1

β̃
[aT e+e1−e2(e2+2x22)−µ1x

1
3+µ2x

2
3] (17)

For demonstration purposes, let us now choose a =[
−6 −11 −6

]T
for behavioral modes located at λ =

1, 2, 3. For this synchronization law, an asymptotically
stable equilibrium point is expected for the closed loop
system.

Figure 3. Synchronization law for (15)

Synchronization law was applied at t = 70s and its
time evolution is depicted in Fig. 3. Synchronization
error is shown in Fig. 4.

Figure 4. Synchronization error for systems (15)

4.2 Discontinuous Case
Second example under consideration is a discontinu-

ous chaotic system based on [Sprott, 2000] of the form

...
x = −µẍ− ẋ− x+ sgn(x) + βu (18)

Such system exhibits chaotic behavior for µ = 0.5 and
β = 0 with Lyapunov exponents (0.152, 0,−0.652). A
projection of the chaotic attractor onto the x1x2-plane
is shown in Fig. 5.

Figure 5. Projection of chaotic atractor for (19) onto the x1 − x2
plane

Let us consider a couple of non-identical non-smooth
systems in the following form:

ẋj1 = xj2 (19)

ẋj2 = xj3

ẋj3 = −xj1 − x
j
2 − µjx

j
3 + sgn(xj1) + βju

yj = xj1

for j = 1, 2, and

sgn(x) =

 1 x > 0
0 x = 0
−1 x > 0
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Let us consider a parameter mismatch, µ1 = 0.5 and
µ2 = 0.49. Error in x1 between both systems is shown
in Fig. 6.

Figure 6. Error for variablex1 of systems (19) with parameter mis-
match

Synchronization error can be defined as e1 = y1 −
y2 = x11 − x21 in such a way that synchronization error
dynamics can be cast in the following form

ė1 = e2 (20)
ė2 = e3

ė3 = −e1 − e2 − µ1x
1
3 + µ2x

2
3 + β̃u

provided that β̃ = β1 − β2 6= 0. For simplicity we
have chosen β1 = 2 and β2 = 1. Then, a suitable
synchronization law can be stated as

u =
1

β̃
[aT e+ e1 + e2 + µ1x

1
3 − µ2x

2
3] (21)

Again we may choose aT as in previous example in or-
der to force the closed loop system to be asymptotically
stable. Synchronization law was applied at t = 5s and
it is shown in Fig. 7.

Figure 7. Synchronization law for example (2)

Synchronization error for variables x1 of both systems
is shown in Fig. 8.

Figure 8. Synchronization error for example (2)

4.3 Non-Identical Systems
In this section we deal with the synchronization of a

couple of different systems applying the proposed strat-
egy. We choose a normal-form Lorenz system and a
Sprott system. Lorenz dynamics can be described as

ẋ1 = σ(x2 − x1) (22)
ẋ2 = ρx1 − x2 − x1x3
ẋ3 = x1x2 − βx3 + u

y = x1

It is well known that for parameters σ = 10, ρ = 28
and β = 8/3 it shows chaotic behavior. Clearly, sys-
tem (22) is not in the form (7), but it can be expressed
in normal form by using coordinates transformation
shown in (6), i.e. x1 = ϕ(x). Thus, for the Lorenz
system, new coordinates are:

ϕ1(x) = = x1 (23)
ϕ2(x) = σ(x2 − x1)
ϕ3(x) = −σ2(x2 − x1) + σ(ρx1 − x2 − 20x1x3)

leading to the following dynamics

ẋ11 = x12 (24)
ẋ12 = x13

ẋ13 = f1(x1) + g1(x1)u

y = x11
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for

f1(x1) = (ρ− 1)σx12 − (25)
(σ + 1)x13 − (x11)

2(x12 + σx11)−
(βx11 − x12)[
σ(1− ρ)x11 + (σ + 1)x12 + x13

x11

]
and

g1(x1) = −σx11 (26)

System (24) is now in normal form. Let us now con-
sider another system to synchronize with:

...
x = −µẍ− ẋ+ x− x3 + βu (27)

Equation (27) represent an electronic circuit described
in [Sprott, 2000] and exhibits chaotic behavior for µ =
0.39 and β = 0. Normal form for the system is shown
below

ẋ21 = x22 (28)
ẋ22 = x23

ẋ23 = −µx23 − x22 + x21 − (x21)
3 + βu

y2 = x21

Synchronization error is defined as e1 = y1 − y2 =
x11 − x21, leading to the following synhronization error
dynamics

ė1 = e2 (29)
ė2 = e3

ė3 = f(x1, x2) + g(x1, x2)u

with f(x1, x2) = f1(x1) − f2(x2) and g(x1, x2) =
β − σx11. Output error between both systems is shown
in Fig. 9.
Thus, a synchronization law can be stated in the form

u =
aT e− f(x1, x2)

g(x1, x2)
(30)

For demonstration purposes, we apply synchronization
law at t = 100s, Fig. 10 shows time response for e1.

5 Concluding Remarks and Future Work
The proposed strategy has shown successful syn-

chronicity for a class of chaotic systems and it can be
implemented for systems depicting some nonsmooth-
ness features. It has been implemented for systems not
in normal form but fully linearizable with coordinates
transformation. Future work is focused in synchroniza-
tion for more than two systems, and on robust synchro-
nization using Internal model controller.

Figure 9. Time evolution for error between Lorenz and Sprott sys-
tems in open loop

Figure 10. Error e1 between (24) and (28) with synchronization
law applied at t = 100s.
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