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Abstract
We report on the feedback control of a periodi-

cally driven FitzHugh-Nagumo system displaying var-
ious dynamical regimes, regular and chaotic, including
chaotic spiking. The feedback term is composed of a
high-pass or an all-pass filter. We provide a charac-
terization of the efficiency of the filters in controlling
the dynamical state of the system, both experimentally
(electronic circuit) and numerically (model equations).
We demonstrate the better efficiency of the all-pass fil-
ter as we change the coupling strength of the feedback.
Moreover, we show that both filters change the appear-
ance of bifurcations, that is the main result of the con-
trolling effect. However, all-pass filter revealed to have
a stronger efficiency in the bifurcation control. Finally,
we discuss the relation of the feedback method based
on filters with the delayed feedback control scheme.
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1 Introduction
The control of dynamical systems is a classical prob-

lem of engineering science. One method for stabiliz-
ing unstable periodic orbits is the Ott-Grebogi-Yorke
(OGY) method [Ott, Grebogi and Yorke, 1990]. First
the unstable low-period orbits that are embedded in the
chaotic attractor are determined. After examination of
these orbits, the one which guarantees the improved
system performance is chosen. Then, small time-
dependent parameter perturbations are applied to sta-
bilize the already existing, but unstable, periodic orbit.

This control method was for the first time successfully
applied to control a parametrically driven magnetoelas-
tic ribbon [Ditto, Rauseo and Spano, 1990]. Other suc-
cessful experimental realizations of this method con-
cerned many other different systems, e.g. in a chaotic
Duffings oscillator [Chen, 1996] and a neural tissue
[Schiff et al., 1994]. Another control method was in-
troduced by Pyragas, the Delayed Feedback Control
(DFC) method [Pyragas, 1992]. The method consists
in applying to the system a term which is the differ-
ence between the current state of the system and its
state one period in the past so that the control signal
vanishes when the stabilization of the desired orbit is
attained. For this reason the method is also called time-
delay auto-synchronization, since the stabilization of
the desired orbit occurs due to the synchronization be-
tween the current state of the system with its delayed
one. The fact that the chaotic system is sensitive to
small perturbations helps in controlling it. Thus by ap-
plying a perturbative, small control term one can obtain
the desired effect. The advantage of this method over
OGY is that it only requires a priori the knowledge of
the period of the system, and does not require any pre-
vious computation. The DFC method has been applied
to many systems, to mention the control of rhythmic
activity in neural ensemble [Rosenblum, et al., 2006].
Recently, it has been shown that phase perturbations
can be used to control different aspects of the dynam-
ics of the driven FitzHugh-Nagumo (FHN) system, that
is, to tame or enhance the spiking activity as well to
control chaos [Zambrano et al., 2008; Zambrano et al.,
2010]. This control technique, called Phase Control of
Chaos (PCC), considers the phase difference ϕ between
the periodic driving and a small harmonic perturbation
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Figure 1. Electronic scheme of the FHN oscillator, with the feed-
back loop in the dashed green box. I1 and I2 are operational ampli-
fiers, R resistors and C capacitors. Vd is the sinusoidal driving signal,
Vb is the bias. Vx and Vy are the voltage signals representing the x
and y variables respectively. The feedback loop consists in a passive
filter (HPF or APF) whose output F1,2 modulated by the signal Vm

and attenuated by R1. R1 = 100K,R2 = 125K,R3 = 143K,
R4 = 1K, R5 = 48K, C1 = 3n, C2 = 37.5n.

added to it. The phase control scheme relies on an ap-
propriate selection of ϕ once the perturbation frequency
and its amplitude are selected, in order to lead the sys-
tem to the desired dynamical regime. This limitation,
which is typical of the non-feedback methods to con-
trol chaos, can be overcome by a suitable filter inserted
in a feedback loop. This feedback control offers several
advantages because once the frequency response of the
system is known, a filter can be implemented and in-
serted in a feedback loop without a preliminary scan-
ning of the phase difference. A simple approach to this
selective control is the wash-out filter [Hassouneh, Lee
and Abed, 2004] easily implemented by a High Pass
Filter (HPF) in a feedback loop with a particularly se-
lected cutoff frequency. When such a filter is inserted
in a feedback loop the high frequencies are rejected.
The control methods based on filters have been used
to control the appearance of bifurcations, what include
delaying the onset of an inherent bifurcation, stabiliz-
ing a bifurcated solution or branch, and other objec-
tives, described in details in Ref. [Chen, Moiola and
Wang, 2002]. In particular, this strategy has been used
to stabilize the fixed points of the systems.
The well-known FHN model [FitzHugh, 1961] used

to demonstrate the phase control, has been the subject

of intensive studies in engineering science [Lemasson,
Lemasson and Moulins, 1995] due to its relative sim-
plicity for analytical study, numerical simulations, and
electronic realization. In spite of its simplicity, many
mechanisms responsible for generating complex pat-
terns in the neural information processes [Scott, 2002]
are contained in it. Chaotic spiking has been theoreti-
cally investigated in FHN model by introducing a third
slow refractory variable [Doi and Kumagai, 2005]. The
chaotic behaviour can be also observed in the periodi-
cally driven FHN system [Pankratova, Polovinkin and
Spagnolo, 2005]. Such chaotic mixed-mode oscilla-
tions (chaotic small amplitude oscillations interrupted
by large spikes) were first discovered in the Belousov-
Zhabotinsky reaction [Petrov et al, 1992] and, since
then, have been frequently observed in experiments and
models of chemical and biological rhythms [Iglesias
et al, 2011] as well as in optical systems [Marino et
al., 2011]. Moreover, the FHN model has been widely
used to investigate the effects of noise. Stochastic res-
onance effects, that optimize information transmission
have been investigated in Ref. [Stocks and Mannella,
2001] and noise enhanced stability phenomena due to
the correlation time of the noise have been investigated
in Ref. [Valenti, Augello and Spagnolo, 2008].
In this paper we study the control method based on

filters in FHN model equations as well as in the exper-
imental implementation of these equations in the elec-
tronic circuit. We consider HPF in the feedback with
the cut-off frequency slightly above the spiking fre-
quency components. We show that the control may be
improved by using an All Pass Filter (APF). To assess
this problem we consider the coupling constant and the
cut-off frequency of the feedback term as the control
parameters and look at the bifurcation diagrams for dif-
ferent values of the driving signal amplitude. We found
that it is possible to delay the onset of bifurcation of the
system, and we demonstrate the better performances of
the APF with respect to the HPF. Finally, we show that
the feedback method based on filters may be expressed
in terms of the delayed variable what reveals the rela-
tion with the delayed feedback control scheme.

2 Model and its implementation
The driven FHN is ruled by the following equations:

ẋ = x− y − x3/3 + Vd

(1)
ẏ = 0.08(x− 0.8y + 0.7)

where x(t) is the voltage variable, y(t) is the recov-
ery variable and Vd = A sin(2πνt) is an external driv-
ing term with amplitude A and frequency ν = 1/T .
The circuit implementing the model in Eq. 2 is shown
in Fig. 1 (excluding filters). It consists of an elec-
tronic analog simulator implemented by commercial
semiconductor devices. The spiking regime, consisting
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Figure 2. Time series of the x variable in open loop conditions ob-
tained (a) experimentally for A = 570mV and T = 2.5ms, and
(b) numerically for A = 0.4267 and T = 0.667.

of chaotic small amplitude oscillations interrupted by
large spikes measured experimentally and numerically,
is shown in Fig. 2 (a) and (b), respectively. A small
amplitude chaotic regime is reached approximately at
A = 0.57 V (for the experiment) and A = 0.4 (for
the model). We consider two filters through which the
output is fed back to the system, that is, a HPF and an
APF. Eq. 2 are modified as follows:

ẋ = x− y − x3/3 + Vd − αF1,2

(2)
ẏ = 0.08(x− 0.8y + 0.7)

where F1,2 are the control signals for HPF and APF, re-
spectively, and α is the coupling strength. The position
of filters in the set up is shown by a box in Fig. 1. The
dynamical evolution F1(t) of the HPF is ruled by the
following first order differential equation:

Ḟ1 = ẋ− F1

τ
(3)

where τ is the time constant. In the case of the APF
the dynamical evolution of the control signal F2(t) is

(a)

(b)

Figure 3. Electronic schemes of (a) HPF and (b) APF.

given by:

Ḟ2 = ẋ− x+ F2

τ
(4)

The electronic schemes for HPF and APF are shown
in Fig. 3 (a) and (b), respectively. In both filters, the
time constant τ = R1C1 is adjusted in order to choose
a suitable cut-off frequency value.

3 Results
Modulation of parameter A, starting from the zero

value, induces the period-doubling route to chaos with
the sharp windows where chaotic spiking emerges, as
shown in the bifurcation diagrams of Figs. 4 (a) and
(c) for experimental circuit and model equations, re-
spectively. When the HPF is introduced in the feed-
back loop, we observe a change of parameter value A
at which the bifurcation onset from period-1 to period-
2 occurs. In Figs. 4 (b) and (d) we marked by an arrow
the shift in the bifurcation onset with respect to the bi-
furcation diagrams shown in Figs. 4 (a) and (c). We
observed the same phenomena also in the case of APF
used instead of HPF. In order to quantify the effects
of filters on bifurcation onsets, we explore the param-
eters A, α and τ and estimate the corresponding dy-
namical regimes observed in the system. In Fig. 5 we
show the parameter space α−A for a fixed value of τ ,
where different dynamical regimes: period-1, period-2,
period-4, chaos and chaotic spiking, are marked with
the scaled colors starting from the brightest (period-1)
ending on the black one (chaotic spiking). The hor-
izontal lowest part of the figures show the dynamical
regimes for α = 0. In the case of HPF (Fig. 5 (a)), as
α is increased, at a critical value α = αc the chaotic
and period-N dynamics disappears completely and is
replaced by a period-1 regime. Also, a slight delay in
the bifurcation onset is observed (notice a slight skew
to the right of the region surrounded by period-1 area).
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Figure 4. Bifurcation diagrams for the varying amplitude A of the
driving force in the open loop conditions ((a) the circuit and (c) the
model) and with a non-zero HPF feedback ((b) the circuit and (d)
the model). The parameters are: (a) α = 0V , T = 2.5ms;
(b) α = 0.4V , T = 2.5ms; (c) α = 0, T = 0.667; (d)
α = 0.203, T = 0.667. xm denotes maxima of oscillations.

On the other hand, in the case of APF (Fig. 5(b)), the
effect of a control has different characteristics. The de-
lay in the bifurcation onset is larger. This delay allows
to achieve control of chaos at smaller values of the cou-
pling α, and thus showing the better performance of
APF over HPF. The bifurcation onsets for the transi-
tion from period-1 to period-2 dynamics for HPF and
APF has been estimated also experimentally as shown
in Fig. 6 (a), and has been compared with the numer-
ical results shown in Fig. 6 (b). The results obtained
experimentally are in a good accordance with numeri-
cal data.
Modulation of the time constant of filters versus A at

fixed value of α (see Fig. 7), reveals the highest vari-
ations at smaller values of τ , while for higher τ ’s the
dynamical regimes remain relatively unchanged. The
situation is the same, both, for HPF (Fig. 7 (a)) and
APF (Fig. 7 (b)). The similar situation is observed in
Fig. 8, where we calculated numerically the dynami-
cal regimes of the system being initially in the chaotic
spiking state (for fixed parameters of driving force), un-
der the effect of HPF and APF in the feedback loop.
Also in this case the highest variation in the dependence
between the parameters α and τ occurs at smaller val-

Figure 5. Dynamical regimes of the FHN system in the parameter
space α - A in the case of: (a) HPF and (b) APF, calculated nu-
merically with the use of the model equations for T = 0.667 and
τ = 0.1.

ues of τ . This dependence is inverse and in approxima-
tion has a form τ = a/(α − α0), where α0 and a are
constant parameters. The transition to period-1 regime
in the case of the HPF (see Fig. 8 (a)) occurs at the
highest value of α0 than in the case of APF (see Fig. 8
(b)). In the view of the above analysis we can conclude
that APF is more efficient than HPF in controlling the
onset of bifurcations in the FHN system.
The inverse dependence of the constant time τ on

coupling α resembles the stability condition for the
simple delayed differential equation of the form ẋ =
−αx(t − τ) [Murray, 1993]. In this case the critical
values of α and τ , at which the stability of solutions
changes, are defined by an equation τ = 1/α. Let us
expand in a Taylor series the variable x(t− τ) delayed
in time:

x(t− τ) ≈ x(t)− τ ẋ(t) +O(τ2) (5)

where we consider only zero and first order terms.
Now, we rewrite Eq. 3 taking into account the above
approximation:

Ḟ1 = ẋ− F1

τ

= −τ−1(F1 − τ ẋ)

= −τ−1(F1 − x+ x− τ ẋ)

≈ −τ−1(F1 + x(t− τ)− x) (6)

where we introduced −x + x in order to retrieve the
Taylor expansion sum. From the above equation we
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Figure 6. Bifurcation points for the transition from period-1 to
period-2 for the FHN system in the parameter space α - A in the
case of (a) experiment for T = 2.5ms and τ = 0.0152s, and
(b) model for T = 0.667 and τ = 0.1. The two curves in each
panel are for HPF (o) and APF (*).

obtain the feedback term composed of the low-pass fil-
tered difference between the delayed x(t− τ) and non-
delayed x(t) variables, that corresponds to a modified
DFC method based on auto-synchronization between
the present and the past state of the system. We apply
the same analysis to Eq. 4:

Ḟ2 = ẋ− x+ F2

τ

= −τ−1(F2 + x− τ ẋ)

≈ −τ−1(F2 + x(t− τ)) (7)

where we obtain the feedback term composed of the
low-pass filtered delayed variable x(t − τ). Thus, the
feedback method based on filters may be expressed in
terms of the delayed variable that reveals its relation to
DFC method. In our case however, the delayed variable
is additionally low-pass filtered and does not enter the
FHN system directly, at variance with the original DFC
method.

4 Conclusion
In this paper we have examined a feedback method

based on filters to control the dynamics of a peri-

Figure 7. Dynamical regimes of the FHN system in the parameter
space τ - A in the case of (a) HPF, and (b) APF, calculated numer-
ically with the use of the model equations for T = 0.667 and
α = 0.1.

Figure 8. Dynamical regimes of the FHN system in the parameter
space α- τ in the case of (a) HPF, and (b) APF, calculated numer-
ically with the use of the model equations with parameters for the
driving force A = 0.4267 and T = 0.667.

odically driven FHN displaying complex behaviour.
We have shown that APF is more efficient than HPF
in achieving suppression of chaos and spiking behav-
ior. The control leading to a period-1 oscillations is
achieved for a certain range of control parameters α
and τ , which we have explored in details. The advan-
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tage of this feedback method with respect to the open
loop PCC method is related to the fact, that it is not
necessary to scan the relative phase up to when the de-
sired behavior is obtained. From this point of view
the method is similar to DFC method, where a priori
knowledge of the period of the system and any previous
computation are not required. In fact, we have shown,
that for small values of time τ , our control scheme may
be expressed in terms of a delayed variable, which does
not enter directly the system but is low-pass filtered be-
forehand.
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