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Abstract  
  In this report I summarize the results in the 
application of Direct Lyapunov method to the 
generalized replicator systems. This complex 
systems to define the properties of an system 
composed of agents that are coupled via pairwise 
interactions. It is shown that there are exist two 
types of Lyapunov functions: fitness-like and 
entropy-like. As example it’ll be establish that 
practically all known entropy measures may be 
obtain from entropy-like Lyapunov function for 
replicator systems. 
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1   The generalized replicator systems 

 Replicator dynamics is an evolutionary strategy 
well established in different disciplines of biological 
sciences. It describes the evolution of self-
reproducing entities called replicators in various 
independent models of, e.g., genetics, ecology, 
prebiotic evolution, and sociobiology. Besides this, 
replicator selection has been applied to problem 
solving in combinatorial optimization and to 
learning in neural networks and also in fluid 
mechanics, game and laser theory. So, the replicator 
systems arising in an extraordinary variety of 
modeling situations. In this report we’ll consider the 
class of generalized replicator equations with 
nonlinear pairwise interactions. There have been 
some recent evidence that suggests that dynamics of 
arbitrary networks can be reduced to pairwise 
interactions [Schneidman et al, 2006] and [Bialek, 
Ranganathan, 2007] 
 Generalized replicator equations determine the 
evolution of probability distributions 
( ) ( ) ( )( )1 ,..., np t p t p t σ= ∈  and has the next  

 

 
form [Pykh, 2003]: 
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Here, if  are nonlinear response functions satisfying 
the conditions ( )0 0if = , 0i if p∂ ∂ > 0ip > , and 

0i if p∂ ⁄∂ for 0ip = ; ( )ijW w=  is the matrix of 

interactions; the function ( ]: 0,h σ → ∞  is 
determined by the particular problem under 
consideration; ( ) ( ), ,p f pθ = e  where ,⋅ ⋅  is the 

inner product; and ( ) ( ) ( )( )1 1 ,..., n nf p f p f p= . 

Obviously, since ( ) , 0p t ≡e� and ( )0 0if = , the 
simplex σ and each of its faces are invariant sets of 
system (1). 
System (1) has a very wide range of applications, 
from mathematical genetics and ecology to neural 
networks [Bomze, 1997] and [Hofbauer,Sigmund, 
2003]. Recently, it was shown [Helbing, 1996] that 
system (1) can be obtained from Boltzmann-like 
equations. Thus, there are grounds for believing that 
system (1) determines the evolution of probability 
distributions for a fairly wide variety of processes. 
To state the main theorem, we need some 
preliminary results. First, it is convenient to pass to 
the matrix form of representation. In this form, 
system (1) becomes 
 
   ( ) ( ) ( )( )1 ,p h p f Wf p f Wf−= − θeD�       (2)  
 
where ( ) ( )1,..., nf diag f f=D . 
If the matrix W is nondegenerate, then system (2) 
has at most one isolated equilibrium point in Intσ , 
which we call nontrivial. 



Statement [Pykh, 2003]. System (2) has a unique 
nontrivial equilibrium point ˆ Intp σ∈   if and only if  
the vector is either strictly positive or strictly 
negative. ,   

1W − e

 
Theorem 1 [Pykh, 2003]. If the matrix W is 
symmetric, then the function 
               

( ) ( ) ( ) ( )2,E p f p Wf p p−= θ                (3) 
 

is a Lyapunov energy function for system (2). ,  
Corollary [Pykh, 2003]. If system (2) has a 
nontrivial equilibrium point ˆ Intp σ∈ , then it is 
totally stable in Intσ  if and only if the matrix W 
has (  negative characteristic numbers. ,  )1n −

Theorem 2 [Pykh, 2003]. If   and system 
(2) has a nontrivial equilibrium point 

TW W=

ˆ Intp σ∈ which is totally stable in Intσ , then the 
entropy-like function: 
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is a Lyapunov energy function for system (2), and  
 
         ( ) ( ) ( )( )ˆ ˆ 0.H h p E p E p= θθ − ≥�   ,   (5) 
 
Now, we can state the main result without 
restriction : TW W=
Theorem 3. [Pykh, 2005] If system (2) has a 
nontrivial equilibrium point p̂ Intσ∈  and the 

matrix ( )TW W+  has ( negative 
characteristic value, then the function 
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is a Lyapunov energy function for sytem (2). ,  
Corollary [Pykh, 2005]. If the conditions of 
Theorem 3 are fulfilled and W  is such that 

 is a stochastic matrix, i.e., 1TW W −

 
1TW W − =e e , 

 
then the entropy production is defined by the 
formula 

        ,      (5) ( ) ( ) ( ) ( )(ˆ ˆ 0H p h p E p E pθθ= −� )
 
Based on this theorem we can recive a set of 
response function for existing entropy measures and 
constract new entropy measures for any response 
functions. Short summary of this approach listed 
below in table 1. 

 
TTable 1. 

Different entropy measures 
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2    Thermodynamic characteristics 

 
We have received expression (3) for replicator’s 
systems energy, expression (4) for systems entropy 
and expression (5) for entropy production. On the 
analogy of termodynamics laws, we can receive 
expression for systems temperature. Indeed if we 
redraft (5) as follows: 

( ) ( )ˆdH h p p
dE

θθ= , 

then according to Clausius definition the systems 
temperature T is equal: 

( ) ( )( ) 1ˆˆT h p pθθ
−

=  

Note that in this case the temperature depends from 
systems steady-state. Now let us consider the exergy 
of the system. Exergy is a measurement of how far a 
certain system deviates from a state of equilibrium 
with its environment. Exergy for a system in an 
environment usually is written as: 

( )ˆEx T H H= −  

So we have a lot of different expression for exergy 
dependance from entropy i.e. from response  
function. If we put: 
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where vector ( )1,..., nα α α σ= ∈  and interaction 
matrix is stochastic i.e. W , then ie = e ˆi pα = . In this 
case we receive the next expression for exergy: 
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It is easy to see that this expression almost coincide 
with formula proposed by Mejer and Jorgensen in 
1979. Note, that in like manner we can receive all 
termodynamic potentials such as Helmholtz or Gibbs 
free energy, which is also Lyapunov, functions. 

3   Conclusion 
  It is seen from the examples given above that many 
(and practically all) known entropy characteristics 
my be obtain from entropy-like Lyapunov function. 
We also emphasize that there exists a relation 
between the derivative of the function ( )H p , which 
can be interpreted as a generalized entropy, and the 
function , which is often considered as an 
analog of the energy or fitness. This relationship for 
entropy production was establihed by Pykh [Pykh, 
2004] and [Pykh, 2005] for different interactions 
matrix and has the next form: 

( )E p

( ) ( ) ( )( )ˆ ˆ 0H h p E p E pθθ= −
i

 
We mention also that all results stated above were 
obtained by formally analyzing systems of 
generalized replicator equations, which arise in very 
diverse fields of natural sciences and, therefore, can 
serve as a basis for finding analogies between these 
domains of natural sciences. Also note that it was 
Ilya Prigogine who the first pointed out [Prigogine, 
1977] the imoprtance of the relationship between 
Lyapunov functions and entropy. 

 
 
References 
 
Bialek W. and Ranganathan R. (2007) Rediscovering 

the power of pairwise interactions. arXiv: 
0712.4397v1 [q-bio.QM] 28 Dec 2007 

Bomze I.M. (1997) Evolution towards the maximum  
clique, Journal of Global Optimization, N 10, pp. 
143 – 164. 

Helbing D. (1996) A stochastic behavioral model and 
a ‘microscopic’ foundation of evolutionary game 
theory. Theory Decision, V. 40, N 2, pp. 149-179. 

Hofbauer J. and Sigmund K. (2003) Evolutionary 
game dynamics. Bull. Am. Math. Soc. V.40, N 4, 
pp. 479-519. 

Prigogine I. (1977) Time, structure and fluctuations. 
Nobel lecture, 8 december. 

Pykh Yu. A. (2003) Energy Lyapunov function for 
generalized replicator equations. In Proceedings of 
International Conference "Physics and Control," St. 
Petersburg, Russia (IFEE Publ., 2003), V. 1, pp. 
271-276.  

Pykh Yu.A. (2004) Construction of entropy 
characteristics based on Lyapunov energy function.  
Doclady Mathematics. V. 69, N 3, p.p. 355-358. 

Pykh Yu. A. (2005) Construction of entropy 
characteristics based on replicator equations with 
nonsymmetric interaction matrices. Doclady 
Mathematics. V 72, N 2, pp. 780-783. 

Schneidman E. et al (2006) Weak pairwise 
correlations impty strongly correlated  network 
states in a  neural population. Nature, N 404 (7087), 
April 20; p.p. 1007-1012. 


	Abstract  
	  In this report I summarize the results in the application of Direct Lyapunov method to the generalized replicator systems. This complex systems to define the properties of an system composed of agents that are coupled via pairwise interactions. It is shown that there are exist two types of Lyapunov functions: fitness-like and entropy-like. As example it’ll be establish that practically all known entropy measures may be obtain from entropy-like Lyapunov function for replicator systems. 

